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Outline of the lecture

• Small world phenomenon

• The shape of the Web graph

• Searching and navigation

• Power law and similar phenomena

– Experimental results

– Erdös-Ŕenyi classical model of random graphs

– Graphs with prescribed degree-sequence

– Models where power laws arise

• The Internet graph

– Experimental results

– Carson-Doyle’s HOT

– Fabrikant-K-Papadimitriou’s model



Small-world phenomena

• In the late 60s Milgram noticed that social networks have small diameter:
In an experiment, letters originating in Nebraska were sent to someone in
Massachusetts via pairs of individuals that knew each other well (by first
name). After 4-5 steps the letters reached their destination.

• The phenomenon gave rise to the claim “six-degrees of separation” (also
a title of a popular play and film): Any two individuals of the planet are
separated by a sequence of at most 6 “shake-hands”.

• There are two “surprising” issues about the phenomenon:

– The graph of acquaintances hassmall diameter.

– There is a simplelocal algorithm that can route a message in a few
steps.



The small-world model of Watts and Strogatz [1998]

A simple model to explain the small diameter of social, telephone, railroad, and
other networks.

• Take a ring (circle) ofn nodes in which every node is connected to the next
k (say 2) nodes.

• Randomly re-wire each edge to a random destination with probabilityp.

• The resulting graph has logarithmic diameter with high probability:

diameter = O(log n)

wherediameter = maxu,vdistance(u, v)



Clustering in networks

The local clustering coefficientat a vertexv is the fraction of the possible
edges between neighbors ofv that exist in the graph.
Theclustering coefficient of a graphG:

C(G) =
number of triangles

number of connected triples

Experiments suggest that social and other networks have

• large clustering coefficient

• small diameter

The model of Watts and Strogatz has both properties.
But do the real, engineered or self-governed, networks “look like” their simple
model? Apparently not.



Kleinberg’s model [2000]

Jon Kleinberg attempted to “explain” the small world phenomenon as follows:
A) B)

u

v w

Consider the 2-dimensional grid. For each nodeu, we add a “long” edge(u, v)
to some nodev selected withprobability proportional to [d(u, v)]−r, where
d(u, v) is the distance betweenu andv, andr is a parameter.

• r = 0: v is selected uniformly among all nodes

• r = 2: For every x, the probability thatv is in distance betweenx and2x
is constant, independent ofx.



Kleinberg’s model

Define aslocal a routing algorithm that knows only

• Its position in the grid

• Its neighbors

• The destination of the message

Theorem 7.1For this model

• Whenr = 2, there is a local algorithm with expected delivery time
O(log2 n).

• Whenr 6= 2, the expected delivery time ofevery local algorithm is Ω(nε),
for someε that depends onr.

lower bound T
on delivery time
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The outline of the web graph

The web graph: Nodes=Pages, Edges=Hyperlinks

• It is huge, ever-expanding graph.

• We don’t know it.

• We don’t know what percentage we know (but we have some estimate)



This is a picture from an article in Computer Networks by Broder, Kumar, et al

It gives a broad outline of some part of the web graph.



More findings about the web graph

• Average directed distance between two nodes: 16

• Average undirected distance between two nodes: 6

• Distribution of strongly connected components



The big picture vs the local structure

• We can distinguish between global properties of the web graph and its local
structure. Although it has been created in an anarchic decentralized way, it
shows a great amount of self-organization.

• Its local properties are useful for searching it, for finding communities and
topics

• The local structure provides important cues to search engines.

• There seems to be possible to exploit the local structure to improve algo-
rithms. How?



Hubs and authorities

• A hub is a page that points to many authorities

• An authority is a page that is pointed to by many hubs

• This definition makes sense only if there are large dense bipartite subgraphs
of the web; this has been verified empirically. Such subgraphs can be ex-
ploited by algorithms that search for particular topic.

• One great advantage of such cues, which content-based cues lack, is that
they cannot be exploited by individuals to mislead the search engines.



Communities on the web

The local structure of the web often reveals the social structure that created it.
Communities on the web are subgraphs that are highly interconnected but have
few connections to the rest of the graph.

Usually community pages have related topics.



The big picture

• One of the striking properties of the web graph is that the degrees of its
nodes follow a general law.

• In particular, the degree distribution does not match the degree distribution
of random graphs

• The degrees of a random graph are highly concentrated around a particular
value but the degrees of the web graph are more diverse and follow apower
law.



The classical theory of random graphs

• Random graphs studied originally by Erdös and Ŕenyi has evolved into a
very influential area in the last 40 years.

• What is a random graph? Taken nodes; each possible edge between them
is selected with a fixed probabilityp.

• Here are some facts about random graphs wherec = np:

• Degree distribution: The expected degree of a node is approximatelyc.
The probability that a node has degree away from this value drops exponen-
tially fast.

• Giant component: If c < 1 then with high probability all components have
size at mostO(log n). If c > 1 then with high probability the largest com-
ponent has sizeΘ(n) and all other components have size at mostO(log n).

• Diameter: If c = ω(log n) then the graph is connected and has diameter at
mostO(log n/ log log n).



Power laws

What is a power law?
Two quantitiesy andx are related by a power law if

y ≈ xc

for some constantc.

log(x)x

y log(y)



Brief history of power laws

Pareto studied the distribution of income. He asked
“How many people have income greater than $100K? Than $20K?”

He observed that the probability that the incomeI is greater than a valuev is

Prob[I > v] ≈ v−k

for some constantk.



Brief history of power laws (cont.)

Zipf studied the distribution of frequencies of words. He asked
“What is the frequency of the most used word? Of the 100th most used?”

He observed that the frequencyf of ther-th most common word is

f ≈ r−1



Power laws and the Web

It has been observed that power laws appear in many aspects of the Internet and
the Web. For example, the number of users per site obeys a power law.



Faloutsi’s picture [1999]

Mihalis, Petros, and Christos Faloutsos studied the degree distribution of the
Internet graph. Here is the log-log plot of the frequency vs the outdegree.

y(x) = frequency of nodes with degree x



Why such an abundance of power laws?

Power laws have been observed almost in every process involving human activ-
ity — they have been termed “the signature of human activity”.
But why?
Many times the explanation is easy: If you get enough logarithms most func-
tions become linear!



Work in power laws

• Experimental results that measure various properties of the Web, the Inter-
net, and other networks (railway, power lines, etc)

• Graphs with prescribed degree-sequence

• Web models where power laws arise

– Albert-Barabasi

– Kumar-Raghavan-Rajagopalan-Sivakumar-Tomkins-Upfal

– Cooper-Frieze

• Internet models where power laws arise

– Carson-Doyle’s HOT model

– Fabrikant-K-Papadimitriou’s model



The Barabasi-Albert model [1999]

Albert and Barabasi proposed the following simple model for random graphs:

• Start with one node (or a small fixed graph)

• Add one-by-one nodes

• Each new node is connected tom nodes selected randomly withprobability
proportional to their degree.

The idea behind the model is simple: New pages tend to have links to “popular”
pages.

The model is called the Barabasi-Albert model, or the preferential attachment
model, or the rich-get-richer model, or the LCD model.



Results about the preferential attachment model

• Albert and Barabasi contacted experiments with their model and they found
that the degrees obey a power law. They also, together with Jeong, gave a
heuristic argument.

• Bollobás, Riordan, Spencer, and Tusnády [2001] proved the following the-
orem:

Theorem 24.1The fraction of nodes with degreed is proportional tod−3.
More precisely, the expected number of nodes with indegreed is

n× 2m(m + 1)

(d + m)(d + m + 1)(d + m + 2)



The Bollobás-Riordan static model

Growth models vs. Static probability distributions:
Bollobás and Riordan gave a simple static description of the random graphs
produced by preferential attachment:

• Consider2n nodes with labels1, 2, . . . , 2n and a random pairing (match-
ing) of them. Starting from the left identify all endpoints up to and including
the first right endpoint. This is node 1. Then identify all further endpoints
up to the next right endpoint. This is node 2. And so on.



Preferential attachment graphs: diameter and clustering

Theorem 26.1The expected diameter of a graph withn nodes is given by

• If m = 1 then the diameter isΘ(log n)

• If m > 1 then the diameter isΘ(log n/ log log n)

Theorem 26.2The expected value of the clustering coefficient of a graph with
n nodes is

m− 1

8

log2 n

n



The copying model

The preferential attachment model cannot explain the observation that the Web
has many dense bipartite subgraphs. Another model, the copying model, by
Kumar, Raghavan, Rajagopalan, Sivakumar, Tomkins, and Upfal [2000] is more
accurate.
To produce a random graph we start with one node and we add one-by-one the
nodes. Each new node hasd edges to previous nodes selected as follows: First
select a (uniformly) random existing nodev. For each one of thed nodes we
select either a neighbor ofv (with probability1− a) or a random existing node
(with probabilitya).
The intuition behind the model is the following. A new page has a topic and
it is likely that most of its links will be similar to the links of some other page
on the same topic. The parametera controls what fraction of links will be new
independent links.



Power laws for the copying model

Theorem 28.1The degree distribution of graphs produced by the copying
model satisfies a power law: The expected fraction of nodes with degreed is

Θ(d−(2−a)/(1−a))

The graphs are rich in bipartite cliques:

Theorem 28.2The expected number of bipartite cliques of sizei× d is

ne−i



The Cooper-Frieze model

Cooper and Frieze proposed and analyzed a general model that has many pa-
rameters that can be tuned. It is a generalization of the preferential attachment
model and the copying model.
The difference with the other two models is that at each step we either add a
new node or add edges to an existing node. The parameters of the model make
it less attractive, but it is important that power laws appear in a wide range of
models.



Power laws for the Internet

The Internet graph: Nodes=Computers and Routers, Edges=links The degree
distribution of the Internet seems to satisfy a power law. Here is the log-log plot
of the frequency vs the outdegree from the Faloutsi paper.

y(x) = frequency of nodes with degree x



Internet is not Web

The graphs of the Internet and the Web share some characteristics but differ
completely on others.
Apparently the models for the Web (a virtual network) are not good for the
Internet (a physical network). The most important difference is geography: A
web page can link to all pages with the same cost. On the other hand, the cost
of connecting two computers depends on their distance.



The HOT model of Carlson and Doyle

Carlson and Doyle, proposed HOT, a different model that predicts (and pro-
duces) power laws: Power laws are sometimes the result of optimal but reliable
designs. For example, the distribution of forest fires is attributed to the fire-
breaks.



The Fabrikant-K-Papadimitriou model

We proposed a simple model of Internet growth, and proved that it results in
power-law-distributed degrees.
A tree is built as nodes arrive uniformly at random in the unit square. When the
i-th node arrives, it attaches itself onj, one of the previous nodes.But which
one?



The Fabrikant-K-Papadimitriou model (cont.)

It wants to optimize two conflicting objectives:

• the distancedij to the other node (the last-mile cost)

• the centralityhj of the other node (the operation cost)

hj measures the centrality of nodej and it can be

1. the average number of hops from other nodes

2. the maximum number of hops from another node

3. the number of hops from a fixed center of the tree



The Fabrikant-K-Papadimitriou model (cont.)

In our model, nodei attaches itself to the nodej that minimizes the weighted
sum of the two objectives:

min
j<i

α · dij + hj,

whereα is a parameter that may depend on the final numbern of points.
The model attempts to capture in a simple way thetrade-offsthat are inherent
in networking, but also in all complex human activity.



Results

The behavior of the model depends crucially on the value ofα.

(1) If α < 1/
√

2, then the tree is a star.

(2) If α = Ω(
√

n), then the degree distribution is exponential.

The expected number of nodes that have degree at leastD is at most
n2 exp(−cD) for some constantc:

E [ |{i : degree ofi ≥ D}| ] < n2 exp(−cD).



Main result

(3) If α ≥ 4 andα = o(
√

n), then the degree distribution ofT is a power law.

Specifically, the expected number of nodes with degree at leastD is greater
thanc · (D/n)−β for some constantsc andβ:

E [ |{i : degree ofi ≥ D}| ] > c(D/n)−β

Forα = o( 3
√

n) the constants are:β ≥ 1/6 andc = O(α−1/2).



Experiments

Tree generated forα = 4 andn = 100, 000.



c.d.f. forα = 4 andn = 100, 000.
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A degree c.d.f. generated at n=100,000, alpha=4



Experiments

Tree generated forα = 20 andn = 100, 000.



Explanation — Proof

(2) If α = Ω(
√

n), then the degree distribution is exponential.

Why?

p

1.5x

x

q



Explanation — Proof

(3) If α ≥ 4 andα = o(
√

n), then the degree distribution ofT is a power law.
distribution is exponential.

Why?

q2

p

q1



So what? Why do we care about power laws?

Possible answers:

• Because we think that we have discovered some deep relation. But many
times there is really nothing there. We see what we want to see.

• Because they are intriguing. They ask for an explanation. Why, for example,
do the files on this particular computer follow such a regular pattern?

• Because we may use them to design better algorithms.

• Because we need the right model for simulations (and sometimes for ana-
lytical results).

• Because we can get analytical results for other problems: For example, there
is some indication that a “disease” spreads easily over scale-free graphs
while it needs some critical spreading rate for other graphs.


