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Many thanks
for the opportunity 

to visit FORTH and Crete and 
to participate in the 

FORTH & Onassis Lectures 
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Looking Into the Future of Human-Centered Technology

The most common The most common 
symbols of a society of the symbols of a society of the 

future is future is ……
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Robots!
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Robots True to Their Name

Auto-assembly

Genome sequencing
Vacuuming



6/111©Mataric’

Where Are the Robots?

• Large numbers used in assembly (from cars 
to genes) and cleaning (vacuums)

• Less pervasive but growing numbers in the 
military, entertainment, service

• Let’s consider some trends…
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• Port automation, cargo loading
• Cleaning (floors to airplanes)
• Warehouse monitoring
• Lawn mowing
• Window washing
• … Companionship

Some Service Robots
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• Surgical robotics
– Hip replacement
– Neurosurgery
– Cardio-thoracic surgery
– Urology/prostate surgery

• Rehabilitation & physical 
therapy robots
– Stroke

• Prosthetics
– Limbs

Robots in Medicine and Health
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Robots In Education

Proven effective as tools for:
• teaching science, technology, engineering, & math 
• recruiting & retaining under-represented student groups
• K-12 → university
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Humanoids
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A Good Time to be a Roboticist

• Robotics is about to enter and change our 
daily lives, in the next one-two decades 

• Very large investments into robotics R&D 
are being made both by governments and 
by industry to make this a reality
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Why Now?

• Enabling economics and demographics: 
large markets/user populations can 
benefit

• Enabling technologies:
– Sensing: off-the-shelf vision, lasers, motion 

capture 
– Communications: ubiquitous
– Computation: Moore’s Law still with us
– Affordable robot hardware (e.g., iRobot)
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A Prediction (not by an Oracle)

• Specialized niche products will succeed 
first (e.g., intelligent vacuum cleaners, toys, 
tele-presence, partially autonomous vehicles, 
semi-intelligent appliances, etc.)

• This will pave the way (through 
manufacturing and maintenance channels and 
social/public acceptance of the technology) for 
more sophisticated, costly, general-
purpose systems (e.g., humanoids)
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What Should be the Future of Robotics?
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Enduring Societal Challenges

1 in 5 children 
is overweight

1M Parkinson’s 
patients,

50,000 new/year
750,000 strokes/year 

in US alone

Regaining functionRegaining function
& retaining & retaining 

independenceindependence

6.6M special ed 
students

3.5M children 
with ADHD

Individualized development, Individualized development, 
learning and traininglearning and training

6.2 to 7.5M people with 
mental retardationElderly at highest risk 

from injury and assault

thousands perish in natural and man-
made disasters

Guidance & Guidance & 
protectionprotection
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Addressing Enduring Societal Challenges

An opportunity for An opportunity for 
humanhuman--centered technology centered technology 

to address to address 
largelarge--scale societal challengesscale societal challenges

and improve human quality of lifeand improve human quality of life
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Imagine a robot …

… that can assist a physical 
therapist

… that is enjoyable to interact with
… that minimizes embarrassment
… that is tirelessly devoted 24-7
… that can get doctor or nurse help

whenever needed
… that helps numerous people 

regain their independence

We call this robot 
Trainer / Coach
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Imagine robots…

… that assist people as part 
of a team

… that serve as eyes and ears
… that are easy to command 

and interact with
… that are unobtrusive
… that are available 24-7 at an 

unsafe location
… that increase the number of 

lives saved and protected

We call these robots
Shepherds / Guides
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Imagine a robot …

… that can help to identify early 
signs of autism and other 
developmental disorders

… that can provide continuous 
support to patients & caregivers

… that is individually customizable
… that provides continuous 

motivation for therapies
… that helps numerous people 

lead happier lives

We call this robot
Minder / Mentor
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Assistive Interactive Robotics

Human-centered 
robotics 
technology
working with people
to help address 
societal needs
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Robot Capabilities → Research Challenges

Interact with caregiver 
medical/teaching/ 

responder staff

Monitor and 
interpret human 

activity

Adapt to the user’s 
changing needs

Achieve 
assistive goals

Respond quickly, 
safely, and adaptively

Engage 
and motivate
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Multidisciplinary Research Endeavor

Inherently 
multidisciplinary, 

demanding a deeper 
understanding of 

people, society and 
technology
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Changing the Role of Machines in Society

Safety, ethics, and social issues must be addressed 
alongside the research and technology development 
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Outline

• Overview & goals
• Action

– Behavior primitives: derivation, classification, and learning
• Interaction

– Multi-robot coordination
– Imitation
– Embodied communication for HRI

• Engagement
– Improved performance from engagement and motivation
– The role of personality
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•Assistive robotics 
•Humanoids 
•Sensor-actuator networks 
•Multi-robot systems and robot teams
•Self-reconfigurable robotics 
•Nano-robotics

USC Robotics Research Areas

http://www-robotics.usc.edu/interaction/?l=research:infrastructure:living_creatures_humanoid:index
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Specific Goals

1. Understand people better: Use robotics 
to gain insights into human behavior and 
human-robot interaction

2. Help people: Develop technology to 
effectively assist people

(Robots do not replace people, they work 
with people)
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Diagnosing and Treatment of 
Developmental & Social Disorders

• Scientific goals: gaining a better understanding of 
(growing) cognitive and social disorders

• Autism and ADHD particularly amenable to robotics-
based intervention

• Robots starting to be used for 
• Diagnosis: augmenting human ability
• Treatment: socialization & education
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Some of Our Socially Assistive Robots

NIH stroke 
rehabilitation
study

Cardiac recoverySpecial education

Walking and running

Arm 
rehabilitation
exercises
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Outline

• Overview & goals
• Action

– Behavior primitives: derivation, classification & learning
• Interaction

– Multi-robot coordination
– Imitation
– Embodied communication for HRI 

• Engagement
– Improved performance through engagement and 

motivation
– The role of personality
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Tackling Complexity

• Activity generation: Real-time robot control in 
dynamic human-populated environments is an 
open problem

• Activity understanding: activity is hard to perceive, 
interpret, and respond to appropriately and quickly

• We aim to reduce the dimensionality of these 
inter-related problems by deriving a tractable 
“vocabulary” of prototypical activities (for the robot 
and human) at each relevant level of abstraction 
(individual, team, crowd) 

→ Unified model: a generative vocabulary of 
activities is the substrate for control, activity 
understanding, and learning
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Activity Generation

• The robot is endowed with a     
set of primitive behaviors            
(pre-programmed or learned);     
these constitute the                 
generative behavior vocabulary, 
the substrate for control

perception
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Activity Generation

perception

• The robot is endowed with a    
set of primitive behaviors            
(pre-programmed or learned); 
these constitute the      
generative behavior vocabulary, 
the substrate for control

• The primitives are composable
through sequencing and/or 
superposition to generate 
higher-level activities

→ Inspiration comes from 
neuroscience of motor control
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Activity Generation

• Planning is conducted in the 
reduced space of the 
vocabulary 

• Learning expands the 
vocabulary by adding new 
behavior primitives and new 
compositions

goals

perception
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Activity Understanding

goals

perception

• The same behavior 
vocabulary is also the 
substrate for activity 
understanding
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Activity Understanding

• The same behavior 
vocabulary is also the 
substrate for activity 
understanding

• Observed activity of others 
(people or robots) is mapped 
onto and classified into this 
vocabulary, allowing 
interpretation and prediction

→ Inspiration comes from 
neuroscience of mirror 
neurons and the motor theory 
of perception

goals

perception
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Activity Generation

• The robot is endowed with a     
set of primitive behaviors            
(pre-programmed or learned);     
these constitute the                 
generative behavior vocabulary, 
the substrate for control

• Where do the primitives come 
from? What are the right ones? 
How many should there be?
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Learning Behaviors From Data

• A data-driven approach: learn primitive behaviors, 
and derived their controllers, directly from captured 
activity data 
– 3D human kinematic data
– 2D individual and group trajectories
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Deriving Behavior Vocabularies

• Goal: automatically derive a vocabulary of parameterized 
behaviors from natural human motion data

• Input: kinematic motion, joint angle time-series
• Process: 

– motion segmentation
– grouping of exemplars through dimension reduction and clustering
– generalizing behaviors into forward models

Motion Capture Vocabulary for a RobotNatural Human Performance
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Behavior Derivation Overview

• Take 3D data, apply non-linear dimension reduction and 
clustering to get primitives (e.g., punch), iteratively re-apply to 
get meta-level behaviors (e.g., swing, punch, pull back), 
interpolate for forward models



40/111©Mataric’

A Few Details

Color change indicates segment boundary

• Segmentation
– Kinematic centroid

• Dimensionality reduction
– PCA insufficient
– Isomap (global spectral dimension 

reduction) had to be extended to 
handle temporal data

• Example input size
– ~22,000 frames at 30 Hz of 40 DOF
– dancing, punching, arm waving, hand 

circles, semaphores
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Deriving Meta-Level Behaviors

• Perform second embedding using the output of the 
first embedding as input

• Brings segments of subsequently performed 
primitives into clusterable proximity

Spatio-Temporal 
Isomap
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A Derived Behavior Vocabulary

• Meta-level behaviors sequentially index into 
primitives

• Primitives produce kinematic motion through 
interpolation
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Forward Model Motion Synthesis

• Forward models allow for motion to be 
synthesized dynamically

• Generalize for motion not specifically 
represented in input performance

PCA-view of 
primitive flow 
field in joint 
angle space
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Forward Model Motion Synthesis

PCA-view of 
primitive flow 
field in joint 
angle space

Corresponding 
kinematic 
motion
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Using Primitives to Classify Activity

• Primitive behaviors are sets of parametrized
trajectories/exemplars

• They are used to generate movement and also 
to classify observed human(oid) movement 

• We use a Bayesian classifier; the primitive 
(model) serves as the condition distribution

→ The resulting movement control and 
understanding are both real-time processes,
performed by the robot on-line, facilitating HRI
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Bayesian Primitives Classifier

• Simple Bayesian classifier:
P(C|X) = P(X|C)*P(C)

C is a class (behavior); X is an observation (joint angles)
– P(X|C) can be determined by primitives
– P(C) can be assumed to be uniform

• How is P(X|C) determined by primitives?
– The exemplars (and valid interpolations in-between) fill a 

high-dimensional subspace of joint-angles over time
– Subspace serves as a model for that behavior

• P(X|C) determined from a “smoothed” distribution of 
assumable joint-angles for a given behavior

• This gives the probability of any given value for all of 
the joints involved in the primitive behavior
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Classification Results

Dataset Description % error

Primitive 
movements

50 non-exemplar instances 
of primitives executed on 
physically simulated 
humanoid

3.39

Motion capture 
and animation 
data 

550 movements from 
animation and mo-cap

0.03
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Activity Generation

• Planning is conducted in the 
reduced space of the 
vocabulary 

• Learning expands the 
vocabulary by adding new 
behavior primitives and new 
compositions

• What can be learned?

goals

perception
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Model Learning

Network learned from:
3500 input behavior 

instances
≈20 minutes of on-line 
real-time data

[Goldberg & Matarić 2000]



50/111©Mataric’

Task Learning From Demonstration

• Learning an object transport task
Learned network:

Human
demonstration

Robot
execution

Environment can be changed 
at execution-time.
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Task Refinement From User Interaction
3rd human demonstration 
(putting through)

Learned task (changed environment)

3rd2nd1st
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Another Benefit: Robots Teaching Other Robots
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Learning Spatial  & Social Primitives

• Use 2D position/trajectory (laser) data, apply proxemics, 
spatio-temporal occupancy grids, spatial statistics, and 
entropy measures (KL-divergence) to derive spatio-temporal 
patterns for classifying activity
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Social Primitives

• We are working on applying the same ideas 
of structure from data for dyadic (one-on-one) 
and group interactions

• Crowds are more easily modeled; with crowd 
behavior the goal is to see if we can control it 
externally, to affect collective flow patterns 
dynamically with robot teams (e.g., for 
evacuation)
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Outline

• Overview & goals
• Action

– Behavior primitives: derivation, classification, and learning
• Interaction

– Multi-robot coordination
– Imitation
– Embodied communication for HRI 

• Engagement
– Improved performance through engagement and 

motivation
– The role of personality
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Multi-Robot Coordination

• Inter-robot interaction is a form of social behavior
• Problem: How do we control a group, team, or 

even swarm of robots?
• Challenges: Scalability, local v. global 

information and control, communication choices, 
robustness
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Multi-Robot Coordination Projects

• Formal frameworks for explicit and swarm control 
• Optimal strategies for multi-robot task allocation

(MRTA) in the OAP context
• Methods for automated synthesis of provably 

correct team controllers for group and swarm tasks
• Physics-based swarm and crowd behavior modeling
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MRTA as OAP

• Optimal assignment is a well-known problem, originally 
studied in the operations research community:
There are n workers, each looking for one job, and m available jobs, 
each requiring one worker.  Each worker has a nonnegative skill 
rating for each job.  The problem is to assign workers to jobs in order 
to maximize the overall performance.

• We can pose a RMTA problem as an OAP:
Given n robots, m single-robot tasks, and estimates of how well each 
robot can be expected to perform each task, assign robots to tasks so 
as so maximize overall expected performance.

• MRTA is a dynamic decision problem; in some cases it 
can be solved statically & iteratively.  Online assignment 
involves tasks that arrive one at a time.



59/111©Mataric’

Utility

• Each robot must estimate the value of its 
actions = utility (also fitness, cost, valuation)

• Assume that each robot R can estimate two 
things regarding an available task T:
QRT : expected quality of execution
CRT : expected cost of execution

⎪
⎩

⎪
⎨

⎧
>

−
=

otherwise               0
                 

and  executing of capable is  if  

RTRT

RTRT

RT CQ
TRCQ

U



60/111©Mataric’

Optimal Assignment Algorithms

• Centralized: Hungarian method [Kuhn, 1955] and 
other (primal and dual) simplex methods
– running time ~ O(mn2) (or O(n3))

• Distributed: various auction algorithms, e.g., [Gale 
and Shapley, 1962, Bertsekas, 1990]
– running time proportional to bidding increment, but often 

tractable
• Greedy task allocation algorithms are:

– 2-competitive for offline assignment [Avis, 1983]
– 3-competitive for online assignment, which is 

optimal [Kalyanasundaram and Pruhs, 1993]
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MRTA Solution Quality Insights

• Most implemented MRTA systems (soccer, 
box pushing, etc.) employ greedy algorithms

• Since the underlying assignment problem 
does not satisfy the greedy-choice property
(not a matroid), they cannot produce optimal 
solutions.
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Example: Target Tracking

Solves the iterated 
assignment problem.     
At each iteration:

• All tasks are considered 
simultaneously, with 
reassignment allowed

• Each robot broadcasts its 
utility for each task: 
O(mn)

• Each robot compares its 
utility for each task to that 
of every other robot: 
O(mn)

Broadcast of Local Eligibility
[Werger & Mataric 2000]
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Example: Auction-Based Box Pushing

Solves the online assignment 
problem.  For each task:

• Tasks are considered 
sequentially, reassignment is 
not allowed

• Each available robot 
broadcasts its bid (i.e., 
utility): O(n)

• Each bidder must compute 
its utility for the task: O(1)

• The auctioneer must find the 
highest utility among the 
bidders: O(n)

Murdoch
[Gerkey & Mataric’ 2002]
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Example: Fire Evacuation

• Scenario & assumptions:
– Map of the environment is available
– Locations of people not known
– Flexible ability to accept operator input

• Goal: dynamically assign alarm-sounding robots 
to exits to maximize evacuation rate

• Approach: on-line multi-robot task allocation 
using the Hungarian algorithm to optimally 
assign tasks (i.e., locations to go to) to robots; 
operator can dynamically specify exit priorities, 
environment changes, etc.
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Real Experimental Environment
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Robot Map and Controller

→ Optimal v. greedy performance ∆ can get lost in the noise
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Multi-Robot Coordination Taxonomy

• Not all MRTA problems can be treated as OAP 
• Consider the following taxonomy:

– Single-task robots v. multi-task robots (ST vs. MT)
– Single-robot tasks v. multi-robot tasks (SR vs. MR)
– Instantaneous v. time-extended assignment (IA vs. TA)

• Only ST-SR-IA can be treated as OAP; the rest are 
NP-hard and most have no known approximation 
algorithms

• If utilities or tasks are inter-related, things get even 
more complicated
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Implicit Multi-Robot Coordination

Synthesis of MRS consisting of distributed, homogeneous robots 
that maintain a limited amount of non-transient internal state

Analysis using a Bayesian macroscopic MRS model capable of 
quantitatively predicting task performance
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Controller Construction

• No explicit 
reasoning on 
world or task state

• To synthesize 
such a controller, 
must:
– Define action 

function
– Define internal 

state transition 
function
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Construction Task Domain

• World State: unique configuration of 
bricks

• Task Definition: sequential placement 
of colored bricks to form a given planar 
structure
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Observations in Construction

• Spatial configuration and colors of bricks within 
the robot's sensing range (100° FOV, 2m range)

• Two observation categories:

Flush: <Flush R B> Corner: <Corner B R>

• Prob. of observing <Flush R B> given <Corner R B> = 11.5%
• Prob. of observing <Corner R B> given <Flush R B> = 1.1%%
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Actions in Construction

• All actions involve the placement of a single 
brick

• Three action categories:
Corner: <G CORNER R B>Flush Right: <G Right Flush R B>

(Flush Left: <G Left Flush R B>)

• Probability of success of Flush = 98.5% and Corner = 78.0%
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Experimental Setup

• Simulation trials
– Gazebo, physically-realistic 

simulation with dynamics
– Player
– 8 Pioneer 2DX robots
– 300 experimental trials for each 

construction task

• Real-robot demonstrations
– Player
– 3 Pioneer 2DX Robots
– Laser and camera
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Construction Task 1: Defn. and Controller
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Construction Task 2: Defn. and Controller
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Macroscopic Model

•Probability of internal state value given task state

•Probability of correct task execution
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Construction Task 1: Analysis

Data from 300 simulation trials
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Construction Task 2: Analysis
Data from 300 simulation trials
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Outline

• Overview & goals
• Action

– Behavior primitives: derivation, classification, and learning
• Interaction

– Multi-robot coordination
– Imitation
– Embodied communication for HRI 

• Engagement
– Improved performance through engagement and 

motivation
– The role of personality
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Imitation as a Tool for HRI

• Approach: The robot uses 
the underlying set of 
behavior primitives as 
models for classifying 
observed activity, imitating it, 
and learning new behaviors 
to expand its repertoire

• The ability to imitate 
becomes a social tools for 
learning, interaction, and 
engagement
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Robots That Learn Skills and Tasks 
From Demonstration

Task learning
Nicolescu & Matarić

Skill learning from demonstration
Schaal

Instantaneous
imitation
Matarić
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Overview of the Imitation System

Encoded into
primitive set

20-DOF dynamic
humanoid 
simulation

Endpoint
trajectoryVision-based

feature tracking

NASA 
Robonaut
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Human-Humanoid Instantaneous Imitation
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Computer-Aibo Instantaneous Imitation

• Imitation using via-point 
primitives alone

• Instantaneous imitation, 
but jerky

• Imitation using oscillatory 
primitives

• Delayed imitation/phase 
lagged but smooth
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Human-Aibo Instantaneous Imitation

• Sony Aibo imitating a human; handling kinematic and joint 
limit mismatch

• Developed a metric of imitation quality
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Leveraging Embodiment

• A fact: it is inherently human to 
automatically ascribe intentionality, 
goals, and feelings to physically 
embodied, moving entities

• The hook: we can’t help it, so can 
we use it effectively? 

• The approach: use the robot’s 
embodiment as the main tool for 
action, interaction, and 
engagement

• The test: achieve measurable 
progress in the given problem 
domain.  
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Embodied Communication

• We focus on the social cues in posture and 
movement: proxemics, the amount of 
gesturing, mirroring, timing, and 
sequenced patterned activity.

• Imitation is a form of embodied interaction, 
establishing a “physical dialogue” between 
two socially interacting entities



88/111©Mataric’

Example of Simple Embodied Communication

• Robot uses its behaviors both to perform the task and to 
convey its intentions & the need for help (i.e., by trying 
and failing in front of the user)

inaccessible object blocked gate
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Embodied Assistive Communication

Our recent study [Gockley & 
Matarić HRI 05] used a 
rehabilitation task to test 
how exercise performance 
(measured with time-on-
task) is affected by having a 
robot around, and how the 
robot’s embodied 
communication (no speech, 
only proximity and amount of 
movement) impacted 
performance.
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Embodied Assistive Communication
Subjects: 12, gender mixed, university-educated
Task: repetitive open-ended moving of pencils from one bit to 

another, a button to push when wanting to stop
Design: each participant saw 3 conditions in random order

1. Control: no robot
2. Aggressive robot: robot got close (personal space) and    

wiggled around to indicate encouragement
3. Passive robot: robot kept a distance and moved little

Robot’s perception: real-time portable IMU-based motion capture 
worn by the subject, laser for proximity detection

Robot’s movement: tied to the participant’s, time-delayed mimicry
Data: questionnaires, video, motion capture
Main result: participants performed better (time-on-task was longer) 

when prompted by robot and all reported enjoying it more
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Walking Coach & Companion

Some applications lend themselves to linguistic interaction 
more than others
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Robot-Assisted Cardiac Surgery Convalescence

Patients readily performed spirometry exercises when 
prompted by the robot and reported enjoying the robot.
[Kyong & Mataric ICORR 05]
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Outline

• Overview & goals
• Action

– Behavior primitives, derivation, and classification
• Interaction

– Multi-robot coordination
– Imitation
– Embodied communication 

• Engagement
– Improved performance through engagement and 

motivation
– The role of personality
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Goals & Challenges

• Goals:
– Why a robot? Experimental confirmation of the role of 

robot embodiment
– Will the effects last? Sustained task performance 

through engagement and motivation 
– Will it work for everyone? Insight into user differences 

and preferences toward personalizing robot behavior 
• Philosophy:

– Emphasis on the behavior of the robot, not its form
– Emphasis on believability, not realism
– Extensive testing with diverse user populations 
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Tower of Hanoi Exercise 

• Ongoing experiment validating the robot’s 
embodiment and interaction style

• Task: Tower of Hanoi (variable difficulty), open-
ended

• Interaction: Exercise “coach” provides verbal and 
movement feedback

• Performance measures:
– Time-on-task
– Correctness
– Speed

• Robot: Hanoi Jane
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Types of Feedback



97/111©Mataric’

Testing the Role of Embodiment 
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Is User Personality Important?

• Human personality is critical in human-human 
interactions

• Personality plays a key role in stroke recovery
• → Personality will play a key role in human-robot 

interaction
• User personality
• Robot personality

• How to study this                                               
scientifically  and                                             
use it to inform                                                
robot design?
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Robot-User Personality Matching

• Obtain personality data (Big 5, 
Myers-Briggs, Eysenk, etc.)

• Test different user-robot 
personality matches 

• Adaptively tune the robot’s 
expression of personality 
through the use of: 
• personal space
• gestures
• tone of voice
• linguistic style
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Robot-User Personality Matching

• Tasks: magazine shelving, 
moving pencils, and painting

• Pilot results:
• Personality matched subjects 

performed longer on the task 
• Extraverted personalities 

preferred extraverted robot 
behavior

• Introverted personalities reported 
on difference in preference (but 
performance varied as per above)

[Tapus&Mataric ISER 06]
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A Study with Stroke Patients

• 6 high-function stroke patients, 
2 women, all middle-aged, 
deficits on different sides of the 
body

• Interaction modalities:
• Sound (beeps in response to 

patient movement)
• Speech (pre-recorded male and 

female voices)
• Physical movement of mobile 

robot

[Eriksson, Mataric, & 
Winsten ICORR 06]
[Mataric, Eriksson, 
Feil-Seifer, & 
Winsten JNER 06]
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Stroke Patient Interaction
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Stroke Patient Interaction
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3 hours and still going…
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Insights and Results

– All reported to have enjoyed the robot
– Large personality differences in mode and amount of 

human-robot interaction and engagement
– Major disparity between compliance/adherence and 

engagement (!!)
– All preferred pre-recorded to synthesized speech
– All preferred South African accented male pre-recorded 

speech (different from HCI results!)
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Approaches to Embodied Engagement

– Mirroring/mimicking the user (mood, amount of 
movement, the movement itself)

– Turn-taking games 
– Commanding/controlling the robot through movement
– Encouragement and praise expression through 

movement & sound
– Teaching (the user or the robot) by imitation
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A Testimonial
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Another Testimonial
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Summary
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Confluence of scientific and technological opportunity + 
large-scale social need →

unique opportunity to shape human-centered robotics 
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Parting words
• More information, papers, videos, and specific 

contributors to the research:
Web: http://robotics.usc.edu/interaction
Email: mataric@usc.edu

Thank you!

http://robotics.usc.edu/interaction
mailto:mataric@usc.edu
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