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Outline of the 2 lectures |

® Bose gases: bright and grey Solitons in Bose-Einstein
Condensates
Example of application of Gross-Pitaevskii equation

® Fermi gases: exploration of BEC-BCS crossover
Superfluidity in Fermi gases



Atom-atom interactions I

u(n) | At low temperature,

only s wave collisions
. Soooa
J l//(r) _ e|k.r __elkl‘
I
. tan ,(k)
a=-lim_,

The magnitude and sign of a depend

sensitively on the detailed shape of long _ :
range potential a. scattering length

Importance of position of last bound state |a|~1 to 100 nm
Using a DC magnetic field, one can modify 47Z'h2

the potential. ( 2) =— (rl — E)

a can be adjusted from—00O to 00 _ o |
Feshbach resonance a > 0 : effective repulsive interaction

a < 0 : effective attractive interaction



Mean field in Bose-Einstein Condensate

® At very low temperatures one parameter sufficient
to describe interaction: the scattering length a

® Scattering cross section: o =4 a2 Y
(non identical particles)

® Mean field of a gas with density n
4nh%na
m

® Example: BEC in dependence of mean field

U=

|Ideal gas: a=0 Repulsive: a>0 Attractive: a<0
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Sandro Stringari lecture

Non interacting ground state
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BEC in harmonic trap | |y :Emwhor
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Role of interactions
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GP equation becomes

as units of lengths and energy, and
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Non interacting ground state

Thomas-Fermi limit (a>0)
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What happens for negative a ? |

In 3D: condensate collapse if Ruprecht et al. PRA 51 (1995)

Bradley et al. (1997)
N | a | /aho >1 Roberts et al. (2001)

[ K . N. 1 1 _
Egelv]= fd3r (%Wl//(r) |2]+g7|w(r) [ +[§mwzzz2 +§mw,f(x2 + YO w () [

g=4rh’a/m<0

The interaction energy shrinks the cloud, increasing further the interaction energy
and overcomes the kinetic energy (KE) term

if N|a|/a,,6 <1 Condensate is stable but with very few atoms (<100 !)

2
In 1 D: possibilty to have a cancellation between KE _h >
and interaction energy: N, glm ml SOLITON



Soliton |

® Dispersion counterbalanced by non linear interaction

® Discovered 1834 by Scott Russell in water

® Used in optical fibers for telecommunication
Non linear Schroedinger equation

Appears in many fields of Science and Technology !





Formation of Matter Wave Solitons |

For positive a, (87 Rb, Na), a soliton is an excited state of a BEC
which can be excitedby engineering a special phase and amplitude

upon a BEC
Hannover, NIST, Harvard, JILA

Another elegant method : band soliton (Heidelberg, M. Oberthaler)

Shift the sign of the mass
In a lattice, the effective mass can be negative !

For negative a, a soliton is a stable self-interacting quantum system
which propagates over large distances without attenuation nor dispersion



Matter wave soliton |

Assumption: start with a BEC such that 7@, > N, |g| |# | No collapse

Condensate wavefunction @(X,Y,Z) =w(z) (X)) ¥ (y)

with harmonic oscillator ground state wave function along x and y

Gross-Pitaevskii energy functional

h° |d 1 1
oo () = No d{Zmd—‘” +Zmal 2y () + 2 Nogoo  (2)]
with
Mo,
= =2a(hw
Jio > (ho,)

0,5 <0



Soliton (2)

What happens if one turns down slowly , ?

Well known bright soliton solution for @, =0

1 1
(2D)"? cosh(z /1)

p(z) =

2
Nomgo

Spatial size of soliton: | =

2
Trade-off between minimization of kinetic energy
g ml?
and interaction energy per particle: N ~21b

2
Chemical potential: ¢ = 1 NS mf?le

8
With, of course, UZTho,



Matter Wave Soliton |

® Dispersion of matter wave E = i2k2/ 2m

® Non linear interaction due to mean field
72 day(z
1D GPE: upd) o D Atz eNgy(@) ) (2) : Gro=28l101)
® Dark solitons created in BEC in Hannover, NIST, in 2000, JILA, Harvard, a>0
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Razor Blade

Phase imprinting on BEC

Imaging system

Laser Beam
532nm

® Hannover expt

P
0,4+
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Apply © phase shift to half of the
condensate wavefunction with a
far detuned Laser beam

Time t, short compared to h/
50 Watt/mm?

Lambda = 532 nm
U=15 102° Joule

Ap= Ut /h=m

200ps lme 2ms 3ms dms Sms Gms

time [ms]

Dark soliton propagates with speed less than speed of sound, 3.7 mm/s here
Would be at rest for perfect «© phase shift



Dark soliton wavefunction |

- 1
2 2
N, v X-X, [, 0
\{fo(x)_-:,/n0 i—t+ |1-—%tanh -
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n,: condensate density

v,: soliton velocity

X,. soliton position

V. speed of sound v, =, /4zan,ai/m
l,: healing length |, = (4zan,)™?

Soliton disappears at condensate edge
Thermally or dynamically unstable



a<0 : Bright Matter Wave
Solitons in Lithium 7

ENS, L. Khaykovich et al., Science 296, (2002)
Rice University, K. Strecker et al., Nature 417, 150 (2002)



Lithium Magneto-optical Trap |

700

Schreck et al., PR A 61, 011403R



Li 7 Bosons |

2,425 { a=-14nm

=1y,
7L
= >
140 G B
11,-1>
141> a=to0..-c0 M Feshbach resonance
1L u=-12yu

Change of microscopic collision properties by an external magnetic field.



The Magnetic elevator




Magnetic Trap

® o, =21130Hz, wq=2 7 8000 Hz



Li 7 Bosons |

2,425 { a=-14nm

=1y,
7L
= >
140 G B
11,-1>
141> a=to0..-c0 M Feshbach resonance
1L u=-12yu

Change of microscopic collision properties by an external magnetic field.



The crossed dipole trap |

Two YAG beams
with 5W and waist of 38 um



Feshbach resonancein 7Li |[F=1 m.=1> |

V. Venturi and C. Williams
NIST

Scattering length [nm]
o

0 500 1000
B [Gauss]
@ Evaporation

@ Gas without interactions: Ideal gas
© Scattering length a < 0: attractive interactions

1500



Li Condensate in optical trap
with adjustable a

® Evaporation to 10 uK in magnetic trap

® Transfer atoms into dipole trap

® Transfer from |2,2>to |1,1>

® Evaporation to BEC with a =+ 2.5 nm

® Reduction of trap depth by x20 in 250 ms !!!
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Soliton production I

® 1D gas with dispersion counterbalanced by non linear interaction
® Change scattering length

Scattering length [nm]
o

: -

0 500 1000 1500
B [Gauss]

® Cut axial confinement and observe expansion in expulsive axial potential

v






ldeal gas in 1D waveguide: a~0 |
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Dispersion of non interacting matter waves




Soliton : a<0 |
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Propagation without spread of axial direction [mm]
N= 6(2) 103 atoms L. Khaykovich et al., Science 296,

1290, 2002




ldeal gas versus Soliton |
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a~0 a=-0.11 nm a=-0.21 nm
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Stability diagram of the soliton: solution of 3D GP equation \

3¢ hz 2\ |2 N #\ |4 1 2_2 1 20,2 2 2\ |2
Ecoly]= [ rﬁﬁwl//(m j+97|w(r>| Ho M, 2+ 2ma, (67 + y )y (1)
15— \

For a=-0.21 nm

| o, /0, =ix701710

Expected: 4.2x10°<N, <5.2x10° |, =1.7um
Measured: N, =6(2)x10°



Soliton Trains |

Rice University, K. Strecker et al., Nature 417, 150 (2002)

# v 000 dms
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Contrarily to the ENS experiment, solitons are always formed
In numbers greater than 4 !

They oscillates up to 3 seconds in the optical trap; some
disappear

Evidence for soliton repulsion between neighboring solitons
Solitons formed with same relative phase attract each other
Solitons formed with = relative phase repel

710 ms




Soliton train formation:
a possible scenario

Formation process: modulation instability: ;'Rﬁ:_aérz&z\z).oirand

Attraction creates density instability over spatial scale
of order of the healing length,

14
¢ = (8mnla|)
creating a sequence of local collapses, in which the wavefunction

amplitude and phase re-arrange in a more stable configuration
of solitons with alternating phases.

Dynamics still largely unexplored !



Return on Collapse of 3D BEC \



Collapse of 3D condensates

Are solitons really in 1D regime ?
Role of trap anisotropy
Cornish, Thomson, Wieman, PRL 96 (2006)

JILA expt's on 85Rb »,/v, = 2.5.

Prepare Rb 85 condensate with &,=8000 atoms on a>0 side
Then switch to a<0,
N, is clearly greater than max number of atoms in soliton

ND < Nc:ritical - k%,

|al
Wait adjustable time up to several 100 ms
Take a time of flight image. What do you see ?



Optical Depth
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Fraction of atoms surviving the collapse
ranges from 60 % for a ~ -5a, to 30%
For a=-50a,. Other atoms disappear
from the trap (or form a thermal cloud).

Controllable production of the
number of solitons



Soliton number vs scattering length |
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Two Solitons oscillating In magnetic trap |

¥ (a) .
111 I 1 i A Neighboring solitons are formed with
g AI IL | f . Tl | } ) relative phase ensuring repulsion
< o0 1 O S A W LT
é ] f k BRI I I m/2<¢ <3m/2)
30 AR T L T A |I | 7 | ||
- \ Lowd | |I | I| o 7:}' | | "
£ %] ,.f | *“[ { o %" | Two Solitons never fully overlap
0 v Never reach critical collapse
5 I ' And remain stable
10 - 7/ 2100 Confirmed by numerical simulation
tevolve ms) of 3D GPE equation

Two solitons oscillating for 3 seconds
And repelling each other




Perspectives on Solitons |

Vast litterature on solitons, vortex rings, vortex pairs, in 2D and
3D structures, JILA, Harvard experiments

Nice review by L. Carr and J. Brand: archiv 0705/1139
Dynamics of the soliton formation

Soliton with small (N=2, 3, ...) atom numbers: pairs of correlated
atoms; EPR tests with massive particles

Soliton atom laser and interferometry with solitons
Production of higher order solitons:

Shifting the scattering length by a factor 4 would produce a
soliton of order 2: time dependent oscillation of soliton amplitude
and phase

A soliton decay process: quantum evaporation through a tunnel
barrier which depends on N: non linear quantum tunneling

L. Carr
Y. Castin

10 11m O 10 um



Soliton of Marathon runners in Greece |
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