
Embedded Systems
Challenges and
Work Directions

Joseph SifakisJoseph Sifakis
VERIMVERIMAAG G LaboratoryLaboratory

HeraklionHeraklion, July 21, 2008, July 21, 2008

O
V
E
R
V
I
E
W

2

� Embedded Systems

� Scientific Challenge

� Work Directions

3

Embedded SystemsEmbedded Systems
An Embedded System integrates software and hardware jointly and specifically

designed to provide given functionalities, which are often critical.

4

Embedded Systems: Economic StakesEmbedded Systems: Economic Stakes

Embedded Systems are of strategic economic importance

� Factor for innovation and differentiation

� Principal source of added value: particularly for embedded software

� This is the fastest-growing sector in IT

Europe has leading positions in sectors where embedded
technologies are central to growth

� Currently: Industry (avionics, automotive, space, consumer
electronics, telecom devices, energy distribution, rail transport, …)

� Anticipated: Services (e-Health, e-Education)

Embedded Systems: TrendsEmbedded Systems: Trends

5

It is hard to jointy meet technical requirements such as
� Reactivity: responding within known and guaranteed delay

Ex : flight controller
� Autonomy : provide continuous service without human

intervention
Ex : no manual start, optimal power management

� Robustness : guaranteed minimal service in any case
Ex : attacks, hardware failures, software execution errors

...and also take into account economic requirements for optimal
cost/quality

Technological challenge :
Building systems of guaranteed functionality and quality,
at an acceptable cost

State of the art

� Critical systems of low complexity
� Flight controller

� Complex « best effort » systems
� Telecommunication systems

We need

� Affordable critical systems
Ex : transport, health

� Successful integration of heterogeneous systems of
systems

� Convergence web/embedded systems

� Automated Highways

� New generation air traffic control

� « Ambient Intelligence»

TO
M

O
R

R
O

W
TO

D
A

Y
We master – at a high cost two types of systems which are

difficult to integrate:

O
V
E
R
V
I
E
W

7

� Embedded Systems

� Scientific Challenge

� Work Directions

The ES Challenge

Technological Challenge:Technological Challenge:
Building systems of Building systems of

guaranteed functionality and quality guaranteed functionality and quality
(performance and robustness), (performance and robustness),

at acceptable costs.at acceptable costs.

This This Technological ChallengeTechnological Challenge
hides an underlying hides an underlying Scientific ChallengeScientific Challenge

Scientific Challenge:Scientific Challenge:

The emergence of Embedded Systems The emergence of Embedded Systems
as a as a scientific and engineering disciplinescientific and engineering discipline

enabling enabling system design predictabilitysystem design predictability,,
as is already the case for the physical sciencesas is already the case for the physical sciences..

9

Scientific Challenge

Computing:
algorithms
protocols
architectures

Environment
constraints:
� Performance
(deadlines, jitter,
throughput)
� Robustness (security,
safety, availability)

Execution
constraints:
CPU speed
memory
power
failure rates

EMBEDDED SYSTEM

10

Scientific Challenge

Embedded System Design
is

generalized Hardware Design

Computing:
algorithms
protocols
architectures

Environment
constraints:
� Performance
(deadlines, jitter,
throughput)
� Robustness (security,
safety, availability)

Execution
constraints:
CPU speed
memory
power
failure rates

EMBEDDED SYSTEM

11

Scientific Challenge

Embedded System Design
is

generalized Control Design

Computing:
algorithms
protocols
architectures

Environment
constraints:
� Performance
(deadlines, jitter,
throughput)
� Robustness (security,
safety, availability)

Execution
constraints:
CPU speed
memory
power
failure rates

EMBEDDED SYSTEM

12

Scientific Challenge
Embedded System Design coherently integrates all these

We need to revisit and revise the most basic computing paradigms
to include methods from Electrical Engineering and Control

Computing:
algorithms
protocols
architectures

Environment
constraints:
� Performance
(deadlines, jitter,
throughput)
� Robustness (security,
safety, availability)

Execution
constraints:
CPU speed
memory
power
failure rates

EMBEDDED SYSTEM

Scientific Challenge:Two Distant Disciplines

Suggested by T. Henzinger: T. Henzinger, J. Sifakis “The Embedded Systems Design Challenge” FM06

Theory for building artifacts with
predictable behavior

Lack of results allowing
constructivity

Physics Computer Science

14

Studies the laws governing
energy, matter and their
relationships

Studies a given « reality »

Physical systems – Analytic
models

Continuous mathematics

Differential equations
Estimation theory -
robustness

Constructivity, Predictability

Mature

Studies foundations of
information and computation

Studies created universes

Computing systems – Machines

Discrete mathematics - Logic

Automata, Algorithms and
Complexity Theory

Verification, Test

Promising

Scientific Challenge :Two Distant Disciplines

Physics Computer Science

Integrate Analytic and Computational Modeling

SequentialParallelComposition
Control flowData flowConnection

SubroutineTransfer FunctionComponent model

Computing Systems
Engineering

Physical Systems
Engineering

Integrate Analytic and Computational ModelingIntegrate Analytic and Computational Modeling

16

Matlab/Simulink
Model

Integrate Analytic and Computational ModelingIntegrate Analytic and Computational Modeling

UML Model
(Rational Rose)

Integrate Analytic and Computational ModelingIntegrate Analytic and Computational Modeling

VerificationSynthesis
Main paradigm

Discrete mathematics (logic,
combinatorics)

Worst-case analysis

Continuous mathematics
(differential equations,
stochastic processes)
Average-case analysis

Analysis Techniques

Dynamic change
Logical time
Abstraction hierarchies, partial
specifications

Concurrency
Physical time
Quantitative constraints (power,
QoS, mean-time-to-failure)

Strengths

Defined by programs
Executable by non-deterministic
machines

Defined by equations
Deterministic or probabilistic

Computational ModelsAnalytic Models

Encompass heterogeneity: Interoperability

Embedded systems are built from components with different characteristics

� Abstraction levels: hardware, execution platform, application software

� Execution: synchronous and asynchronous components

� Interaction: function call, broadcast, rendezvous, monitors

We need a unified composition paradigm for describing and analyzing
the coordination between components

Encompass heterogeneity: Abstraction Levels

Application SW

Implementation

CORBA

DSP μcontroller
RTOS OSEK

TTA CAN

Lustre ADA SDL RT- Java
Esterel UML

C C++

Matlab/Simulink

Encompass heterogeneity: Abstraction Levels

Application SW

Functional properties - logical abstract time
High level structuring constructs and primitives

Simplifying synchrony assumptions wrt environment

Implementation

Non functional properties, involving time and quantities

Task coordination, scheduling, resource management,

Execution times, interaction delays, latency

abstraction

Encompass heterogeneity:
Synchronous vs. Asynchronous

Implementation

� Non interruptible
execution steps
� Usually, a single task,
on a single processor

� «Everybody gets
something »

Synchronous
Lustre, Esterel

Statecharts

� Event triggered
� Multi-tasking

- RTOS
� Usually, static
Priorities

� «Winner takes all »

Asynchronous
ADA, SDL

Application SW

Component-based

Systems

Encompass heterogeneity:
Synchronous vs. Asynchronous

step1step1 step2step2 step3step3

Synchronous execution:
� In a given step all sequential units have some time

budget.
� Steps are non interruptible; should be small enough to

ensure reactivity; implemented by strong synchronization

Asynchronous execution:
� No predefined execution step. Fairness is enforced by
priorities (preemption of lower priority sequential units)

Encompass heterogeneity: Interaction

We need a unified composition paradigm for describing and analyzing
the coordination between components.

Such a paradigm would allow system designers
and implementers to formulate their solutions

in terms of tangible, well-founded and organized concepts
instead of using dispersed low-level coordination mechanisms including

semaphores, monitors, message passing, remote call, protocols etc.

Interactions

� can involve strong synchronization (rendezvous) as in CSP or weak
synchronization (broadcast) as in SDL, Esterel

� can be atomic as in CSP, Esterel or non atomic as in SDL

� can be binary (point to point) as in CCS, SDL or n-ary as in Lotos

Encompass heterogeneity: Example

Synchronous Computation

A S nonA S A nonS nonA nonS

Lotos
CSP

Java
UML SDL

UML

Matlab/Simulink
VHDL, Statecharts,
Synchronous languages

A: Atomic interaction S: Strong synchronization

Asynchronous Computation

Cope with Complexity: Achieving Correctness

by Checking that a System
meets Requirements

Ad hoc models
e.g. Simulation

Verification
e.g. Model Checking

Physical prototypes
e.g. Testing

Models
(Virtual SW Prototypes)

by Construction e.g.
Algorithms, Architectures

Correctness

Cope with Complexity: Verification

Three essential ingredients

� Requirements
describing the expected behavior, usually as a set of
properties

� Models
describing a transition relation on the system states

� Methods
for checking that a system model satisfies given
requirements

Cope with Complexity: Compositionality

☺

☺
☺

☺

☺

Today, a posteriori system verification at high development costs limited
to medium complexity systems

Tomorrow, compositional construction: at design time, infer properties of
a composite system from properties of its components

Cope with Complexity: Compositionality

☺

☺
☺

☺

☺

Today, a posteriori system verification at high development costs limited
to medium complexity systems

Tomorrow, compositional construction: at design time, infer properties of
a composite system from properties of its components

Cope with Complexity: Compositionality

Develop compositionality results

� For particular

� architectures (e.g. client-server, star-like, time triggered)

� programming models (e.g. synchronous, data-flow)

� execution models (e.g. event triggered preempable tasks)

� For specific classes of properties such as deadlock-freedom, mutual
exclusion, timeliness

Compositionality rules and combinations of them lead

� to “verifiability” conditions, that is conditions under which
verification of a particular property becomes much easier.

� to correct-by-construction results

Cope with Uncertainty: Adaptivity

Systems must ensure a given service, in interaction with uncertaSystems must ensure a given service, in interaction with uncertain in
and unpredictable environmentsand unpredictable environments

Today, to cope with uncertainty, systems are overToday, to cope with uncertainty, systems are over--sized and make a sized and make a
subsub--optimal use of their resources : optimal use of their resources :
static and separated static and separated allocation for each critical serviceallocation for each critical service

Tomorrow, adaptive systems ensuring optimal, dynamic and global
resource management for enhanced predictability and use of
resources

Control UnitControl Unit

Control UnitControl Unit

Control UnitControl Unit

ArbiterArbiter

Cope with Uncertainty: Adaptive System

32

Planning

Learning

Managing Conflicting Objectives

Movie would have been better …

Go to: 1) Stadium 2) Movie 3) Restaurant

Cope with Uncertainty: Adaptive System

Learning

Strategies
for Managing Objectives

Controlled System

Tactics
for achieving objectives

Adaptive Controller

choices states

O
V
E
R
V
I
E
W

34

� Embedded Systems

� Scientific Challenge

� Work Directions

Model-based Development

Compilation/Synthesis

Application
SW

Platform
Timed Model

Environment
Timed Model

User
Requirements

System
Timed Model

Code
Generation

Implementation

Analysis

Diagnostics

Model-based Development – Timed model

Environment
Application

SW

RT
O

S HW

A Timed Model of a RT system can be obtained by
“composing” its application SW with constraints e.g. timing,
induced by both its execution and its external environment

stimuli

response

Real-time system

Model-based Development – Timed model

Time constraints on
interactions

Timeouts to control
waiting times

Time
Triggered
Events

Assumptions about
Execution Times
Platform-dependence

No assumption about
Execution Time
Platform-independence

Statements

Quantitative (internal) time
- Consistency problems

Reference to physical
(external) time

Time

Reactive machine
+ Environment
+ Platform

Program - Reactive
machine

Description

Timed modelApplication SW

TO(5)

input input (5)

Model-based Development – An example (1/3)

Environment

Reactive C

DSP

Event handler

tin

tout

Deadline constraint
tout - tin<D

Throughput constraint:
no buffer overflow

Model-based Development – An example (2/3)

Machine
Description

C Code

Reactive C

Target Machine
executable code

SAXO-RT

SAXO IF/KRONOS

Timing
Diagnostics

Environment
Timed Model

Event Handler
Timed Model

Exec. T
imes

C2TimedC
Timed

(instrumented)
C Code

Model-based Development – An example (3/3)

Application =
Reactive C
+ Pragmas

Instrumented
C Code

SAXO-RT

Event
Handler

IF/KRONOS

Timing
Diagnostics

Exec.Times

QoS requ.

Environment
= Reactive C
+ Pragmas

Instrumented
C Code

SAXO-RT

SAXO

Target Machine
Executable

Code

41

Compiler
Compiler

Task1 Task2 Task3 Task4Event
Handler

Synchronization and resource management

Compiler

Security

Scheduler

Platform

Timing
QoS

Architecture
modelApplication SW

Resource-aware Compilation

42

� Minimal architectures, reconfigurable, adaptive, with features for
safety and security

� Give up control to the application –
move resource management outside the kernel

� Supply and allow adaptive scheduling policies which take into
account the environmental context (ex: availability of critical
resources such as energy).

Operating systems are often:

� Far more complex than necessary

� Undependable

� With hidden functionality

� Difficult to manage and use efficiently

Move towards standards dedicated to specific domains
Ex: OSEK, ARINC, JavaCard, TinyOS

Operating Systems

43

Automation applications are of paramount importance –
their design and implementation raise difficult problems

Hybrid Systems – active research area

� Combination of continuous and discrete control techniques

� Multi-disciplinary integration aspects (control, numerical analysis,
computer science)

� Modeling and Verification

� Distributed and fault-tolerant implementations (influence
communication delays, clock drift, aperiodic sampling)

ª Use of control-based techniques for adaptivity

Control for Embedded Systems

1. An unmanned plane (UAV) deploys motes1. An unmanned plane (UAV) deploys motes

2.2. Motes establish an sensor network Motes establish an sensor network
with power managementwith power management

3.3.Sensor network detectsSensor network detects
vehicles and wakes up vehicles and wakes up

the sensor nodesthe sensor nodes

ZzzZzz......

Sensor Networks

SentrySentry

45

Work Directions :
� Methodologies for domain-specific standards, such as :

- DO178B Process Control Software Safety Certification
- Integrated Modular Avionics; Autosar
- Common Criteria for Information Technology Security Evaluation

� Verification Technology (verify resistance to certain classes of errors and attacks) –
certification

� Architectures, protocols and algorithms for fault-tolerance and security taking into
account QoS requirements (real-time, availabability)

� Traditional techniques based on massive redundancy are of limited value

� Dependability should be a guiding concern from the very start of system
development. This applies to programming style, traceability, validation
techniques, fault-tolerance mechanisms, ...

Dependability

Integration of Methods and Tools

46

SystemC SystemC MatlabMatlab//SimulinkSimulink SDLSDL UML UML
AADLAADL

VHDL VHDL LustreLustre--EsterelEsterel ADA ADA RTRT--JavaJava

OSEK ARINC OSEK ARINC RavenscarRavenscar JavaCardJavaCard SymbianSymbian TinyOSTinyOS

μμcontrollercontroller DSP FPGA DSP FPGA SoCSoC NoCNoC

AutosarAutosar .NET .NET JiniJini
CorbaCorbaTTP CAN TTP CAN SafeBusSafeBus BluetoothBluetooth WiFiWiFi

VxWorksVxWorks POSIX POSIX WinCEWinCE

C C++ C# JavaC C++ C# Java

HW

OS

NW

MW

PR

MO

47

THANK YOUTHANK YOU

