
Timing Analysis and Timing Predictability

Reinhard Wilhelm
Saarland University

Saarbrücken

Supported by ARTIST2, ARTIST DESIGN, Predator, AVACS

Structure of the Lectures
1. Introduction
2. Static timing analysis

1. the problem
2. our approach
3. the success
4. tool architecture

3. Cache analysis
4. Pipeline analysis
5. Value analysis

1. Timing Predictability

• caches
• non-cache-like devices
• future architectures

2. Conclusion

Industrial Needs
Hard real-time systems, often in safety-critical

applications abound
– Aeronautics, automotive, train industries, manufacturing control

Wing vibration of airplane,

sensing every 5 mSec

Sideairbag in car,

Reaction in <10 mSec

Hard Real-Time Systems

• Embedded controllers are expected to finish
their tasks reliably within time bounds.

• Task scheduling must be performed

• Essential: upper bound on the execution times of
all tasks statically known

• Commonly called the Worst-Case Execution Time
(WCET)

• Analogously, Best-Case Execution Time (BCET)

Static Timing Analysis

Embedded controllers are expected to finish
their tasks reliably within time bounds.

The problem:

Given

1. a software to produce some reaction,

2. a hardware platform, on which to execute the
software,

3. required reaction time.

Derive: a guarantee for timeliness.

What does Execution Time Depend on?

• the input – this has always
been so and will remain so,

• the initial execution state of
the platform – this is
(relatively) new,

• interferences from the
environment – this depends on
whether the system design
admits it (preemptive
scheduling, interrupts).

Caused by caches,
pipelines, speculation etc.

Explosion of the space of
inputs and initial states

⇒ no exhaustive
approaches feasible.

“external” interference
as seen from analyzed
task

Modern Hardware Features

• Modern processors increase (average-case)
performance by using:
Caches, Pipelines, Branch Prediction, Speculation

• These features make bounds computation difficult:
Execution times of instructions vary widely
– Best case - everything goes smoothly: no cache miss,

operands ready, needed resources free, branch correctly
predicted

– Worst case - everything goes wrong: all loads miss the
cache, resources needed are occupied, operands are not
ready

– Span may be several hundred cycles

Access Times

LOAD r2, _a

LOAD r1, _b

ADD r3,r2,r1

0

10

20

30

0 Wait

Cycles

1 Wait

Cycle

External

(6,1,1,1,...)

Execution Time depending on Flash Memory

(Clock Cycles)

Clock Cycles

0

50

100

150

200

250

300

350

Best Case Worst Case

Execution Time (Clock Cycles)

Clock Cycles

MPC 5xx PPC 755

x = a + b;

The threat:
Over-estimation by a factor of 100 ����

Notions in Timing Analysis

worst-case performance

d
is

tr
ib

u
ti
o
n
 o

f
ti
m

e
s

WCETBCET

time

possible execution times

0

Lower
timing
bound

Upper
timing
bound

timing predictability

worst-case guarantee

Minimal
observed
execution

time

Maximal
observed
execution

time

measured execution times

The actual WCET
must be found or
upper bounded

Hard or
impossible to

determine

Determine
upper bounds

instead

Timing Analysis and Timing Predictability

• Timing Analysis derives upper (and maybe
lower) bounds

• Timing Predictability of a HW/SW system is
the degree to which bounds can be determined
– with acceptable precision,

– with acceptable effort, and

– with acceptable loss of (average-case) performance.

• The goal (of the Predator project) is to find a
good point in this 3-dimensional space.

Timing Analysis
A success story for formal methods!

aiT WCET Analyzer

IST Project DAEDALUS final
review report:

"The AbsInt tool is probably the

best of its kind in the world and it

is justified to consider this result

as a breakthrough.”

Several time-critical subsystems of the Airbus A380

have been certified using aiT;

aiT is the only validated tool for these applications.

Tremendous Progress
during the past 13 Years

1995 2002 2005

o
ve
r-
es
ti
m
a
ti
o
n

20-30%

15%

30-50%

4

25

60

200

ca
ch
e-
m
is
s
p
en
a
lt
y

Lim et al. Thesing et al. Souyris et al.

The explosion of penalties has been compensated

by the improvement of the analyses!

10%

25%

High-Level Requirements for
Timing Analysis

• Upper bounds must be safe, i.e. not
underestimated

• Upper bounds should be tight, i.e. not far
away from real execution times

• Analogous for lower bounds

• Analysis effort must be tolerable

Note: all analyzed programs are terminating,
loop bounds need to be known ⇒

no decidability problem, but a complexity problem!

Our Approach

• End-to-end measurement is not possible
because of the large state space.

• We compute bounds for the execution times of
instructions and basic blocks and determine a
longest path in the basic-block graph of the
program.

• The variability of execution times
– may cancel out in end-to-end measurements, but

that’s hard to quantify,

– exists “in pure form” on the instruction level.

Timing Accidents and Penalties

Timing Accident – cause for an increase
of the execution time of an instruction

Timing Penalty – the associated increase
• Types of timing accidents

– Cache misses
– Pipeline stalls
– Branch mispredictions
– Bus collisions
– Memory refresh of DRAM
– TLB miss

Execution Time is History-Sensitive

Contribution of the execution of an instruction to
a program‘s execution time

• depends on the execution state, e.g. the time
for a memory access depends on the cache
state

• the execution state depends on the execution
history

• needed: an invariant about the set of execution
states produced by all executions reaching a
program point.

• We use abstract interpretation to compute
these invariants.

Deriving Run-Time Guarantees

• Our method and tool, aiT, derives Safety
Properties from these invariants :
Certain timing accidents will never happen.
Example: At program point p, instruction
fetch will never cause a cache miss.

• The more accidents excluded, the lower
the upper bound.

Murphy’s
invariant

Fastest Variance of execution times Slowest

Abstract Interpretation in Timing Analysis

• Abstract interpretation is always based
on the semantics of the analyzed
language.

• A semantics of a programming language
that talks about time needs to
incorporate the execution platform!

• Static timing analysis is thus based on
such a semantics.

The Architectural Abstraction
inside the Timing Analyzer

Timing analyzer

Architectural abstractions

Cache
Abstraction

Pipeline
Abstraction

Value
Analysis,
Control-Flow
Analysis,
Loop-Bound
Analysis

abstractions of
the processor’s
arithmetic

Abstract Interpretation in Timing Analysis

Determines

• invariants about the values of variables
(in registers, on the stack)
– to compute loop bounds

– to eliminate infeasible paths

– to determine effective memory addresses

• invariants on architectural execution state
– Cache contents ⇒ predict hits & misses

– Pipeline states ⇒ predict or exclude pipeline stalls

Tool Architecture

Abstract Interpretations

Abstract Interpretation
Integer Linear
Programming

Tool Architecture

Abstract Interpretations

Abstract Interpretation
Integer Linear
Programming

Caches

Caches:
Small & Fast Memory on Chip

• Bridge speed gap between CPU and RAM
• Caches work well in the average case:

– Programs access data locally (many hits)
– Programs reuse items (instructions, data)
– Access patterns are distributed evenly across

the cache

• Cache performance has a strong influence on
system performance!

Caches vs. Scratchpads – an Undecided Battle

- Caches are energy hungry,
+ some cache architectures are nicely predictable.

The alternative are compiler-managed scratchpads,
+ scratchpads are economical wrt. energy,
- they need to be explicitly saved and loaded,
- they do not perform well under preemptive scheduling

schemes and in interrupt-driven systems.
Some architects avoid caches because they don’t know how

to analyze the behavior.

Caches: How they work

CPU: read/write at memory address a,
– sends a request for a to bus

Cases:
• Hit:

– Block m containing a in the cache:
request served in the next cycle

• Miss:
– Block m not in the cache:

m is transferred from main memory to the cache,
m may replace some block in the cache,
request for a is served asap while transfer still
continues

a

m

Replacement Strategies

• Several replacement strategies:

LRU, PLRU, FIFO,...
determine which line to replace when a
memory block is to be loaded into a full
cache (set)

LRU Strategy
• Each cache set has its own replacement logic =>

Cache sets are independent: Everything explained
in terms of one set

• LRU-Replacement Strategy:
– Replace the block that has been Least Recently Used

– Modeled by Ages

• Example: 4-way set associative cache

age 3210

m0 m1
Access m4 (miss) m4 m2

m1
Access m1 (hit) m0m4 m2

m1m5Access m5 (miss) m4 m0

m0 m1 m2 m3

Cache Analysis

How to statically precompute cache contents:

• Must Analysis:

For each program point (and context), find out which blocks

are in the cache → prediction of cache hits

• May Analysis:

For each program point (and context), find out which blocks

may be in the cache

Complement says what is not in the cache → prediction of

cache misses

• In the following, we consider must analysis until otherwise

stated.

(Must) Cache Analysis
• Consider one instruction in

the program.

• There may be many paths

leading to this instruction.

• How can we compute

whether a will always be in

cache independently of

which path execution

takes?

load a

Question:
Is the access to a
always a cache hit?

Determine Cache-Information
(abstract cache states) at each Program Point

{a, b}
{x}

youngest age - 0

oldest age - 3

Interpretation of this cache information:
describes the set of all concrete cache states
in which x, a, and b occur

• x with an age not older than 1

• a and b with an age not older than 2,

Cache information contains
1. only memory blocks guaranteed to be in cache.
2. they are associated with their maximal age.

Cache- Information

Cache analysis
determines safe
information about
Cache Hits.
Each predicted Cache
Hit reduces the upper
bound by the cache-
miss penalty.

load a
{a, b}

Computed
cache information

Access to a is a cache hit;
assume 1 cycle access time.

{x}

Cache Analysis – how does it work?

• How to compute for each program point an
abstract cache state representing a set of
memory blocks guaranteed to be in cache
each time execution reaches this program
point?

• Can we expect to compute the largest set?

• Trade-off between precision and
efficiency – quite typical for abstract
interpretation

(Must) Cache analysis of a memory access

{a, b}
{x}

access to a

{b, x}

{a}

After the access to a,

a is the youngest memory
block in cache,
and we must assume that
x has aged.
What about b?

b
a

access to a

b

a

x

y

y

x

concrete
transfer
function
(cache)

abstract
transfer
function
(analysis)

Combining Cache Information
• Consider two control-flow paths to a program point:

– for one, prediction says, set of memory blocks S1 in cache,

– for the other, the set of memory blocks S2.

– Cache analysis should not predict more than S1 ∩ S2 after the merge of paths.

– the elements in the intersection should have their maximal age from S1 and S2.

• Suggests the following method: Compute cache information along all paths to
a program point and calculate their intersection – but too many paths!

• More efficient method:

– combine cache information on the way,

– iterate until least fixpoint is reached.

• There is a risk of losing precision, not in case of distributive transfer
functions.

What happens when control-paths merge?

{ a }

{ }

{ c, f }

{ d }

{ c }

{ e }

{ a }

{ d }

{ }

{ }

{ a, c }

{ d }

“intersection
+ maximal age”

We can
guarantee
this content

on this path.

We can
guarantee

this content

on this path.
Which content

can we
guarantee

on this path?

combine cache information at each control-flow merge point

Must-Cache and May-Cache- Information

• The presented cache analysis is a Must
Analysis. It determines safe information
about cache hits.
Each predicted cache hit reduces the
upper bound.

• We can also perform a May Analysis. It
determines safe information about cache
misses
Each predicted cache miss increases the
lower bound.

(May) Cache analysis of a memory access

{a, b}
{x}

access to a

{x}

{a}

Why? After the access to a

a is the youngest memory block in cache,
and we must assume that x, y and b have aged.

{b, z}

{y}

{z}

{y}

Cache Analysis: Join (may)
{ a }

{ }

{ c, f }

{ d }

{ c }

{ e }

{ a }

{ d }

{ a,c }

{ e}

{ f }

{ d }

“union
+ minimal age”

Join (may)

Result of the Cache Analyses

 Category Abb. Meaning

 always hit ah The memory reference will

 always result in a cache hit.

 always miss am The memory reference will

 always result in a cache miss.

 not classified nc The memory reference could

 neither be classified as ah

 nor am.

Categorization of memory references

Abstract Domain: Must Cache

z
s
x
a

x
s
z
t

z
s
x
t

s
z
x
t

z
t
x
s

α

Abstraction

Representing sets of concrete caches by their description

concrete caches

{ }

{ }

{z,x}

{s}

abstract cache

Abstract Domain: Must Cache

{ }

{ }

{z,xz,xz,xz,x}

{ssss}

γ

Concretization

{s∈{
z, xz, xz, xz, x ∈

Sets of concrete caches described by an abstract cache

remaining line filled up
with any other block

concrete caches

abstract cache

over-approximation!

Abstract Domain: May Cache

z
s
x
a

x
s
z
t

z
s
x
t

s
z
x
t

z
t
x
s

{z ,s, x}
{ t }
{ }

{ a }

α

Abstraction

abstract cache

concrete caches

Abstract Domain: May Cache

γ

Concretization

{z,s,x}
{ t }
{ }

{ a }

abstract may-caches say
what definitely is not in cache
and what the minimal age of
those is that may be in cache.

∈{z,s,x}
∈{z,s,x,t}
∈{z,s,x,t}
∈{z,s,x,t,a}

concrete caches

abstract cache

Cache Analysis

Over-approximation of the Collecting Semantics

the semantics set of all cache states
for each program point

determines

“cache” semantics set of cache states
for each program point

determines

abstract semantics abstract cache states
for each program point

determines

conc

Collecting semantics
collects at each program
point all states that any
execution may encounter

there.

reduces the program
to the sequence of
memory references

Complete Lattices:
The Mathematics of Semantic Domains

Bottom element ?

Top element >

a

v
bInformation order v

Convention: b more precise than a

a b
t

Join operator t combines information

Set A of elementsRelation between t and v:

a v b iff a t b = b

(A, v, t, u, >, ?)

Lattice for Must Cache

• Set A of elements

• Information order v

• Join operator t

• Top element >

• Bottom element ?

{ }

{ }

{z,x}

{s}

Abstract cache states:

Upper bounds on the age

of memory blocks

guaranteed to be in cache

“young”

“old”

Age

Lattice for Must Cache

• Set A of elements

• Information order v

• Join operator t

• Top element >

• Bottom element ?

{ }

{ }

{z}

{s}

{ }

{z}

{x}

{s}

v

“young”

“old”

Age

Better precision:

more elements in the cache or

with younger age.

NB. The more precise abstract

cache represents less

concrete cache states!

Lattice: Must Cache

• Set A of elements

• Information order v

• Join operator t

• Top element >

• Bottom element ?

{ a }

{ }

{ c, f }

{ d }

{ c }

{ e }

{ a }

{ d }

{ }

{ }

{ a, c }

{ d }

t

Form the intersection and

associate the elements with

the maximum of their ages

“young”

“old”

Age

Lattice: Must Cache

• Set A of elements

• Information order v

• Join operator t

• Top element >

• Bottom element ?

{ }

{ }

{ }

{ }

“young”

“old”

Age

No information:

All caches possible

Lattice: Must Cache

• Set A of elements

• Information order v

• Join operator t

• Top element >

• Bottom element ?
Dedicated unique bottom

element representing the

empty set of caches

Galois connection –
Relating Semantic Domains

• Lattices C, A
• two monotone functions ® and °

• Abstraction: ®: C → A
• Concretization °: A → C
• (®,°) is a Galois connection

if and only if
° • ® wC idC and ® • ° vA idA

Switching safely between concrete and abstract
domains, possibly losing precision

Abstract Domain Must Cache
° • ® wC idC

z
s
x
a

x
s
z
t

z
s
x
t

s
z
x
t

z
t
x
s

{ }

{ }

{z,x}

{s}

α

γ

safe, but may lose

precision

{s∈{
z, xz, xz, xz, x ∈

concrete caches

abstract cache

remaining line
filled up with any
memory block

Correctness of the Abstract
Transformer

Abstract transfer
function f#

°

Concrete transfer
function f

°

concrete
caches

Abstract
cache

Abstract
cache

⊆

Semantics II
Cousot‘s Best Transformer

°

Abstract transfer
function f#

Concrete transfer
function f

®

cache
states

Abstract
cache

Abstract
cache

{a, b}
{x}

a

{b, x}

{a}

You remember the
abstract transfer
function?

f# =® ± f ± °

Lessons Learned

• Cache analysis, an important ingredient of
static timing analysis, provides for
abstract domains,

• which proved to be sufficiently precise,

• have compact representation,

• have efficient transfer functions,

• which are quite natural.

An Alternative Abstract Cache Semantics:
Power set domain of cache states

• Set A of elements - sets of concrete
cache states

• Information order v - set inclusion

• Join operator t - set union

• Top element > - the set of all cache
states

• Bottom element ? - the empty set of
caches

Power set domain of cache states

• Potentially more precise

• Certainly not similarly efficient

• Sometimes, power-set domains are the
only choice you have → pipeline analysis

Problem Solved?

• We have shown a solution for LRU caches.
• LRU-cache analysis works smoothly

– Favorable „structure“ of domain
– Essential information can be summarized compactly

• LRU is the best strategy under several aspects
– performance, predictability, sensitivity

• … and yet: LRU is not the only strategy
– Pseudo-LRU (PowerPC 755 @ Airbus)
– FIFO
– worse under almost all aspects, but average-case

performance!

Abstract Interpretation – the Ingredients

• Abstract domain –
complete lattice (A, v, t, u, >, ?)

• (monotone) abstract transfer functions for
each statement/condition/instruction

• information at program entry points

Instantiating an Abstract Interpretation

Given control-flow graph of a program with
statements/conditions/instructions at
edges

• associate abstract transfer function with
each edge

• associate lattice join with control-flow
merge points

• induces a recursive set of equations

Solving Static Analysis Problems

control
flow
graph

recursive
equation
system

abstract
transfer
functions

solution

Abstract
Domain

Fixpoint
Solver

Must-Caches
May-Caches
Intervals

Solving Static Analysis Problems
by Fixpoint Iteration

control
flow
graph

recursive
equation
system

abstract
transfer
functions

Abstract
Domain

Fixpoint
Solver

X=f(X) Kleene iteration:
X0 = ?
Xi+1=f(Xi)

h
e
igh

t

solution

Ascending
Chain
Condition:
+ Must-Caches
+ May-Caches
- Intervals

Solving Static Analysis Problems
Widening

control
flow
graph

recursive
equation
system

abstract
transfer
functions

Abstract
Domain

Fixpoint
Solver

X=f(X) Kleene iteration:
X0 = ?
Xi+1=f(Xi)

solution

Enforcing
Termination:
widening

Contribution to WCET

while . . . do [max n]
.
.
.

ref to s
.
.
.

od

time

tmiss

thit

loop time

n ∗ tmiss

n ∗ thit

tmiss + (n − 1) ∗ thit

thit + (n − 1) ∗ tmiss

Contexts

Cache contents depends on the Context,

i.e. calls and loops

while cond do

join (must)

First Iteration loads the cache =>

Intersection loses most of the information!

Distinguish basic blocks by
contexts

• Transform loops into tail recursive
procedures

• Treat loops and procedures in the same
way

• Use interprocedural analysis
techniques, VIVU
– virtual inlining of procedures
– virtual unrolling of loops

• Distinguish as many contexts as useful
– 1 unrolling for caches
– 1 unrolling for branch prediction (pipeline)

Structure of the Lectures
1. Introduction
2. Static timing analysis

1. the problem
2. our approach
3. the success
4. tool architecture

3. Cache analysis
4. Pipeline analysis
5. Value analysis

1. Timing Predictability

• caches
• non-cache-like devices
• future architectures

2. Conclusion

Tool Architecture

Abstract Interpretations

Abstract Interpretation
Integer Linear
Programming

Pipelines

Hardware Features: Pipelines

Ideal Case: 1 Instruction per Cycle

Fetch

Decode

Execute

WB

Fetch

Decode

Execute

WB

Inst 1 Inst 2 Inst 3 Inst 4

Fetch

Decode

Execute

WB

Fetch

Decode

Execute

WB

Fetch

Decode

Execute

WB

Pipelines

• Instruction execution is split into several
stages

• Several instructions can be executed in parallel

• Some pipelines can begin more than one
instruction per cycle: VLIW, Superscalar

• Some CPUs can execute instructions out-of-
order

• Practical Problems: Hazards and cache misses

Pipeline Hazards

Pipeline Hazards:
• Data Hazards: Operands not yet available

(Data Dependences)
• Resource Hazards: Consecutive

instructions use same resource
• Control Hazards: Conditional branch
• Instruction-Cache Hazards: Instruction

fetch causes cache miss

Cache analysis: prediction of cache hits on instruction or

operand fetch or store

Cache analysis: prediction of cache hits on instruction or

operand fetch or store

Static exclusion of hazards

lwz r4, 20(r1) Hit

Dependence analysis: elimination of data hazardsDependence analysis: elimination of data hazards

Resource reservation tables: elimination of resource hazardsResource reservation tables: elimination of resource hazards

add r4, r5,r6

lwz r7, 10(r1)

add r8, r4, r4
Operand

ready

IF

EX

M

F

CPU as a (Concrete) State Machine

• Processor (pipeline, cache, memory,
inputs) viewed as a big state machine,
performing transitions every clock cycle

• Starting in an initial state for an
instruction
transitions are performed,
until a final state is reached:
– End state: instruction has left the pipeline

– # transitions: execution time of instruction

A Concrete Pipeline Executing a Basic Block

function exec (b : basic block, s : concrete pipeline state)
t: trace

interprets instruction stream of b starting in state s
producing trace t.

Successor basic block is interpreted starting in initial
state last(t)

length(t) gives number of cycles

An Abstract Pipeline Executing a Basic Block

function exec (b : basic block, s : abstract pipeline state)
t: trace

interprets instruction stream of b (annotated
with cache information) starting in state s
producing trace t

length(t) gives number of cycles

What is different?

• Abstract states may lack information, e.g. about cache
contents.

• Traces may be longer (but never shorter).

• Starting state for successor basic block?
In particular, if there are several predecessor blocks.

s2s1
s?

Alternatives:

• sets of states

• combine by least upper bound (join),

hard to find one that

• preserves information and

• has a compact representation.

Non-Locality of Local Contributions

• Interference between processor components
produces Timing Anomalies:
– Assuming local best case leads to higher overall

execution time.
– Assuming local worst case leads to shorter overall

execution time
Ex.: Cache miss in the context of branch prediction

• Treating components in isolation may be unsafe
• Implicit assumptions are not always correct:

– Cache miss is not always the worst case!
– The empty cache is not always the worst-case

start!

An Abstract Pipeline Executing a Basic Block
- processor with timing anomalies -

function analyze (b : basic block, S : analysis state) T: set
of trace

Analysis states = 2PS x CS

PS = set of abstract pipeline states

CS = set of abstract cache states

interprets instruction stream of b (annotated with cache
information) starting in state S producing set of traces
T

max(length(T)) - upper bound for execution time

last(T) - set of initial states for successor block

Union for blocks with several predecessors.

S2S1
S3 =S1 ∪S2

Integrated Analysis: Overall
Picture

Basic Block

s1

s10

s2 s3

s11 s12

s1

s13

Fixed point iteration over Basic Blocks (in

context) {s1, s2, s3} abstract state

move.1 (A0,D0),D1

Cyclewise evolution of processor model

for instruction

s1 s2 s3

Classification of Pipelines

• Fully timing compositional architectures:
– no timing anomalies.
– analysis can safely follow local worst-case paths only,
– example: ARM7.

• Compositional architectures with constant-
bounded effects:
– exhibit timing anomalies, but no domino effects,
– example: Infineon TriCore

• Non-compositional architectures:
– exhibit domino effects and timing anomalies.
– timing analysis always has to follow all paths,
– example: PowerPC 755

Characteristics of Pipeline Analysis

• Abstract Domain of Pipeline Analysis
– Power set domain

• Elements: sets of states of a state machine

– Join: set union

• Pipeline Analysis
– Manipulate sets of states of a state machine

– Store sets of states to detect fixpoint

– Forward state traversal

– Exhaustively explore non-deterministic choices

Abstract Pipeline Analysis
vs Model Checking

• Pipeline Analysis is like state traversal in
Model Checking

• Symbolic Representation: BDD

• Symbolic Pipeline Analysis:

Topic of on-going dissertation

Nondeterminism

• In the reduced model, one state resulted
in one new state after a one-cycle
transition

• Now, one state can have several
successor states
– Transitions from set of states to set of

states

Implementation
• Abstract model is implemented as a DFA
• Instructions are the nodes in the CFG
• Domain is powerset of set of abstract states
• Transfer functions at the edges in the CFG

iterate cycle-wise updating each state in the
current abstract value

• max {# iterations for all states} gives
WCET

• From this, we can obtain WCET for basic
blocks

Why integrated analyses?

• Simple modular analysis not possible for
architectures with unbounded
interference between processor
components

• Timing anomalies (Lundqvist/Stenström):
– Faster execution locally assuming penalty

– Slower execution locally removing penalty

• Domino effect: Effect only bounded in
length of execution

Timing Anomalies

Let ∆Tl be an execution-time difference between
two different cases for an instruction,

∆Tg the resulting difference in the overall execution
time.

A Timing Anomaly occurs if either
• ∆Tl< 0: the instruction executes faster, and

– ∆Tg < ∆T1: the overall execution is yet faster, or
– ∆Tg > 0: the program runs longer than before.

• ∆Tl > 0: the instruction takes longer to execute,
and
– ∆Tg > ∆Tl: the overall execution is yet slower, or
– ∆Tg < 0: the program takes less time to execute than

before

Timing Anomalies

∆Tl< 0 and ∆Tg > 0:
Local timing merit causes global timing
penalty
is critical for WCET:
using local timing-merit assumptions is
unsafe

∆Tl > 0 and ∆Tg < 0:
Local timing penalty causes global speed up
is critical for BCET:
using local timing-penalty assumptions is

unsafe

Tool Architecture

Abstract Interpretations

Abstract Interpretation
Integer Linear
Programming

Value Analysis
• Motivation:

– Provide access information to data-cache/pipeline
analysis

– Detect infeasible paths
– Derive loop bounds

• Method: calculate intervals at all program points,
i.e. lower and upper bounds for the set of
possible values occurring in the machine program
(addresses, register contents, local and global
variables) (Cousot/Cousot77)

Value Analysis II

• Intervals are computed along the

CFG edges

• At joins, intervals are „unioned“

D1: [-2,+2] D1: [-4,0]

D1: [-4,+2]

move.l #4,D0

add.l D1,D0

move.l (A0,D0),D1

D1: [-4,4], A[0x1000,0x1000]

D0[4,4], D1: [-4,4],

A[0x1000,0x1000]

D0[0,8], D1: [-4,4],

A[0x1000,0x1000]

access [0x1000,0x1008]Which address is accessed here?

Interval Domain

(-1,0]

(-1,-1]

[-2,2] [0,1)

[1,1)

[-2,0]

[-2,-1]

[-2,1]

[-1,1] [0,2]

[-1,0] [0,1] [1,2]

[2,2][1,1][0,0][-1,-1][-2,-2]

[-1,2]

(-1,1)

[-1,1)(-1,1]

1
h
e
ig
h
t

Interval Analysis in Timing Analysis

• Data-cache analysis needs effective
addresses at analysis time to know where
accesses go.

• Effective addresses are approximatively
precomputed by an interval analysis for
the values in registers, local variables

• “Exact” intervals – singleton intervals,
• “Good” intervals – addresses fit into less

than 16 cache lines.

Value Analysis (Airbus Benchmark)

Task Unreached Exact Good Unknown Time [s]

1 8% 86% 4% 2% 47

2 8% 86% 4% 2% 17

3 7% 86% 4% 3% 22

4 13% 79% 5% 3% 16

5 6% 88% 4% 2% 36

6 9% 84% 5% 2% 16

7 9% 84% 5% 2% 26

8 10% 83% 4% 3% 14

9 6% 89% 3% 2% 34

10 10% 84% 4% 2% 17

11 7% 85% 5% 3% 22

12 10% 82% 5% 3% 14

1Ghz Athlon, Memory usage <= 20MB

Tool Architecture

Abstract Interpretations

Abstract Interpretation
Integer Linear
Programming

• Execution time of a program =

∑ Execution_Time(b) x
Execution_Count(b)

• ILP solver maximizes this function to
determine the WCET

• Program structure described by linear
constraints
– automatically created from CFG structure
– user provided loop/recursion bounds
– arbitrary additional linear constraints to

exclude infeasible paths

Basic_Block b

Path Analysis
by Integer Linear Programming (ILP)

if a then

b

elseif c then

d

else

e

endif

f

a

b

c

d

f

e

10t

4t

3t

2t

5t

6t

max: 4 xa + 10 xb + 3 xc +

2 xd + 6 xe + 5 xf

where xa = xb + xc

xc = xd + xe

xf = xb + xd + xe

xa = 1

Value of objective function: 19

xa 1

xb 1

xc 0

xd 0

xe 0

xf 1

Example (simplified
constraints)

Structure of the Lectures
1. Introduction
2. Static timing analysis

1. the problem
2. our approach
3. the success
4. tool architecture

3. Cache analysis
4. Pipeline analysis
5. Value analysis

1. Timing Predictability

• caches
• non-cache-like devices
• future architectures

2. Conclusion

Timing Predictability

Experience has shown that the precision of results
depend on system characteristics

• of the underlying hardware platform and
• of the software layers
• We will concentrate on the influence of the HW

architecture on the predictability
What do we intuitively understand as

Predictability?
Is it compatible with the goal of optimizing

average-case performance?
What is a strategy to identify good compromises?

Structure of the Lectures
1. Introduction
2. Static timing analysis

1. the problem
2. our approach
3. the success
4. tool architecture

3. Cache analysis
4. Pipeline analysis
5. Value analysis

1. Timing Predictability

• caches
• non-cache-like devices
• future architectures

2. Conclusion

Predictability of
Cache Replacement Policies

Uncertainty in Cache Analysis

read

y

mul
x, y

read

x

write

z

1. Initial cache contents?

2. Need to combine information

3. Cannot resolve address of x...

4. Imprecise analysis domain/

 update functions

 Need to recover information:

 Predictability = Speed of Recovery

Metrics of Predictability:
..
.

..
.

..
.

[f,e,d]

[f,e,c]

[f,d,c]

[h,g,f]

fill
evict

Seq: a b c d e f g h

Two Variants:

M = Misses Only

HM

evict & fill

Meaning of evict/fill - I

• Evict: may-information:
– What is definitely not in the cache?

– Safe information about Cache Misses

• Fill: must-information:
– What is definitely in the cache?

– Safe information about Cache Hits

Meaning of evict/fill - II

Metrics are independent of analyses:

� evict/fill bound the precision of any
static analysis!

� Allows to analyze an analysis:
Is it as precise as it gets w.r.t. the metrics?

Replacement Policies

• LRU – Least Recently Used
Intel Pentium, MIPS 24K/34K

• FIFO – First-In First-Out (Round-robin)
Intel XScale, ARM9, ARM11

• PLRU – Pseudo-LRU

Intel Pentium II+III+IV, PowerPC 75x

• MRU – Most Recently Used

MRU - Most Recently Used

MRU-bit records whether line was
recently used

Problem: never stabilizes

e

c
b,d

c „safe“

for 5 acc.

Tree maintains order:

Problem: accesses „rejuvenate“
neighborhood

Pseudo-LRU

c

�

e

�

Results: tight bounds

Results: tight bounds

Generic examples prove tightness.

Results: instances for k=4,8

Question: 8-way PLRU cache, 4 instructions per line

Assume equal distribution of instructions over

256 sets:

How long a straight-line code sequence is needed to
obtain precise may-information?

Future Work I

• OPT = theoretical strategy,
optimal for performance

• LRU = used in practice,
optimal for predictability

• Predictability of OPT?

• Other optimal policies for predictability?

OPT for performance

LRU for predictability=
?

Future Work II

Beyond evict/fill:

• Evict/fill assume complete uncertainty

• What if there is only partial
uncertainty?

• Other useful metrics?

LRU has Optimal Predictability,
so why is it Seldom Used?

• LRU is more expensive than PLRU, Random, etc.

• But it can be made fast
– Single-cycle operation is feasible [Ackland JSSC00]

– Pipelined update can be designed with no stalls

• Gets worse with high-associativity caches
– Feasibility demonstrated up to 16-ways

• There is room for finding lower-cost highly-
predictable schemes with good performance

LRU algorithm

LRU stack
MRU LRU

12 3 45 607

Hit in 0
MRU LRU

1 3 4 602 5 7

• Trivial, but requires an associative search-and-shift
operation to locate and promote a bank to the top of the
stack.

• It would be too time consuming to read the stack from
the RAM, locate and shift the bank ID within the stack,
and write it back to the RAM in a single cycle.

LRU HW implementation

[Ackland JSSC00] LRU info is available in one cycle

• LRU-RAM produces LRU states for lines @ current ADDR

• Stores updates when state is written back: LRU is available

at the same cycle when a MISS is detected

LRU RAM Update Circuit

• Three-cycle operation
1. LRU RAM is read

2. LRU info is updated

3. LRU RAM is written

• Pipelined with forwarding paths to eliminate
hazards MRU LRU

12 3 45 607

If STACK[0] ≠ NEW

STACK[0]<= NEW;

STACK[1]<= STACK[0];

If STACK[i] ≠ NEW

STACK[i+1]<= STACK[i];

Beyond evict/fill

Evolution of may- /must-information
(PLRU):

may/must-
set sizes

distinct
access

sequence

evict(k) fill(k)

log k +1

k

Structure of the Lectures
1. Introduction
2. Static timing analysis

1. the problem
2. our approach
3. the success
4. tool architecture

3. Cache analysis
4. Pipeline analysis
5. Value analysis

1. Timing Predictability

• caches
• non-cache-like devices
• future architectures

2. Conclusion

Extended the Predictability
Notion

• The cache-predictability concept applies
to all cache-like architecture
components:

• TLBs, BTBs, other history mechanisms

The Predictability Notion

Unpredictability
• is an inherent system property
• limits the obtainable precision of static predictions about

dynamic system behavior
Digital hardware behaves deterministically (ignoring

defects, thermal effects etc.)
• Transition is fully determined by current state and input
• We model hardware as a (hierarchically structured,

sequentially and concurrently composed) finite state
machine

• Software and inputs induce possible (hardware)
component inputs

Uncertainties About State and Input

• If initial system state and input were known, only
one execution (time) were possible.

• To be safe, static analysis must take into account
all possible initial states and inputs.

• Uncertainty about state implies a set of starting
states and different transition paths in the
architecture.

• Uncertainty about program input implies possibly
different program control flow.

• Overall result: possibly different execution times

Ed wants to
forbid this!

Source and Manifestation of
Unpredictability

• “Outer view” of the problem: Unpredictability
manifests itself in the variance of execution
time

• Shortest and longest paths through the
automaton are the BCET and WCET

• “Inner view” of the problem: Where does the
variance come from?

• For this, one has to look into the structure of
the finite automata

Variability of Execution Times

• is at the heart of timing unpredictability,
• is introduced at all levels of granularity

– Memory reference
– Instruction execution
– Arithmetic
– Communication

• results, in some way or other, from the
interference on shared resources.

Connection Between Automata and
Uncertainty

• Uncertainty about state and input are
qualitatively different:

• State uncertainty shows up at the “beginning” ≅
number of possible initial starting states the
automaton may be in.

• States of automaton with high in-degree lose
this initial uncertainty.

• Input uncertainty shows up while “running the
automaton”.

• Nodes of automaton with high out-degree
introduce uncertainty.

State Predictability – the Outer View

Let T(i;s) be the execution time with component input i
starting in hardware component state s.

The range is in [0::1], 1 means perfectly timing-predictable

The smaller the set of states, the smaller the variance
and the larger the predictability.

The smaller the set of component inputs to consider,
the larger the predictability.

Input Predictability

Comparing State Predictability
- on the basis of the variance -

• statically scheduled processors more
predictable than dynamically scheduled,

• static branch prediction more predictable than
dynamic branch prediction,

• processor without cache more predictable than
processor with cache,

• scheduling on several levels is most
unpredictabe

• independent cache sets are more predictable
than dependent cache sets

• separate I- and D-caches are more predictable
than uniform caches

Predictability – the Inner View

• We can look into the automata:

• Speed of convergence

• #reachable states

• #transitions/outdegree/indegree

Processor Features of the MPC
7448

• Single e600 core, 600MHz-
1,7GHz core clock

• 32 KB L1 data and instruction
caches

• 1 MB unified L2 cache with ECC
• Up to 12 instructions in

instruction queue
• Up to 16 instructions in parallel

execution
• 7 stage pipeline
• 3 issue queues, GPR, FPR,

AltiVec
• 11 independent execution units

Processor Features (cont.)
• Branch Processing Unit

– Static and dynamic branch prediction
– Up to 3 outstanding speculative branches
– Branch folding during fetching

• 4 Integer Units
– 3 identical simple units (IU1s), 1 for complex operations (IU2)

• 1 Floating Point Unit with 5 stages
• 4 Vector Units
• 1 Load Store Unit with 3 stages

– Supports hits under misses
– 5 entry L1 load miss queue
– 5 entry outstanding store queue
– Data forwarding from outstanding stores to dependent loads

• Rename buffers (16 GPR/16 FPR/16 VR)
• 16 entry Completion Queue

– Out-of-order execution but In-order completion

Challenges and Predictability
• Speculative Execution

– Up to 3 level of speculation due to unknown branch
prediction

• Cache Prediction
– Different pipeline paths for L1 cache hits/misses
– Hits under misses
– PLRU cache replacement policy for L1 caches

• Arbitration between different functional units
– Instructions have different execution times on IU1

and IU2
• Connection to the Memory Subsystem

– Up to 8 parallel accesses on MPX bus
• Several clock domains

– L2 cache controller clocked with half core clock
– Memory subsystem clocked with 100 – 200 MHz

Architectural Complexity
implies

Analysis Complexity

Every hardware component whose state has an
influence on the timing behavior

• must be conservatively modeled,

• contributes a multiplicative factor to the size
of the search space.

History/future devices: all devices concerned
with storing the past or predicting the future.

Classification of Pipelines

• Fully timing compositional architectures:
– no timing anomalies.
– analysis can safely follow local worst-case paths only,
– example: ARM7.

• Compositional architectures with constant-
bounded effects:
– exhibit timing anomalies, but no domino effects,
– example: Infineon TriCore

• Non-compositional architectures:
– exhibit domino effects and timing anomalies.
– timing analysis always has to follow all paths,
– example: PowerPC 755

Recommendation for Pipelines

• Use compositional pipelines;
often execution time is dominated by
memory-access times, anyway.

• Static branch prediction only;

• One level of speculation only

More Threats created by
Computer Architects

• Out-of-order execution

• Speculation

• Timing Anomalies,
i.e., locally worst-case path does not lead to the
globally worst-case path, e.g., a cache miss can
contribute to a globally shorter execution if it
prevents a mis-prediction.

Consider all possible
execution orders

ditto

Considering the locally
worst-case path insufficent

First Principles

• Reduce interference on shared resources.

• Use homogeneity in the design of
history/future devices.

Interference on Shared Resources

• can be real
– e.g., tasks interfering on buses,

memory, caches

• can be virtual, introduced by
abstraction, e.g.,
– unknown state of branch predictor

forces analysis of both transitions ⇒
interference on instruction cache

– are responsible for timing anomalies

real non-determinism

artificial
non-determinism

Design Goal:
Reduce Interference on Shared

Resources

• Integrated Modular Avionics (IMA) goes
in the right direction – temporal and
spatial partitioning for eliminating logical
interference

• For predictability: extension towards the
elimination/reduction of physical
interference

Shared Resources between
Threads on Different Cores

• Strong synchronization
⇒ low performance

• Little synchronization
⇒ many potential interleavings
⇒ high complexity of analysis

Recommendations for Architecture Design

Architecture follows application:
Exploit information about the application
in the architecture design.

Design architectures to which applications
can be mapped without introducing extra
interferences.

Form follows function,

(Louis Sullivan)

Recommendation for Application
Designers

• Use knowledge about the architecture to
produce an interference-free mapping.

Separated Memories

• Characteristic of many embedded
applications: little code shared between
several tasks of an application ⇒
separate memories for code of threads
running on different cores

Shared Data

• Often:
– reading data when task is started,
– writing data when task terminate

• deterministic scheme for access to
shared data memory
required cache performance determines
– partition of L2-caches
– bus schedule

• Crossbar instead of shared bus

Conclusion

• Feasibility, efficiency, and precision of
timing analysis strongly depend on the
execution platform.

• Several principles were proposed to
support timing analysis.

Relevant Publications (from my group)
• C. Ferdinand et al.: Cache Behavior Prediction by Abstract Interpretation.

Science of Computer Programming 35(2): 163-189 (1999)
• C. Ferdinand et al.: Reliable and Precise WCET Determination of a Real-Life

Processor, EMSOFT 2001
• M. Langenbach et al.: Pipeline Modeling for Timing Analysis, SAS 2002
• R. Heckmann et al.: The Influence of Processor Architecture on the Design and

the Results of WCET Tools, IEEE Proc. on Real-Time Systems, July 2003
• St. Thesing et al.: An Abstract Interpretation-based Timing Validation of Hard

Real-Time Avionics Software, IPDS 2003
• R. Wilhelm: AI + ILP is good for WCET, MC is not, nor ILP alone, VMCAI 2004
• L. Thiele, R. Wilhelm: Design for Timing Predictability, 25th Anniversary edition of

the Kluwer Journal Real-Time Systems, Dec. 2004
• J. Reineke et al.: Predictability of Cache Replacement Policies, Real-Time

Systems, 2007
• R. Wilhelm: Determination of Execution-Time Bounds, CRC Handbook on

Embedded Systems, 2005
• R. Wilhelm et al. : The worst-case execution-time problem—overview of methods

and survey of tools, ACM Transactions on Embedded Computing Systems (TECS),
Volume 7 , Issue 3 (April 2008)

• R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, C. Ferdinand:
Desiderata for Future Architectures in Time-critical Embedded Systems,
submitted to TCAD

