
Verification of Progress Properties

Amir Pnueli

New York University and Weizmann Institute of Sciences (Emeritus)

Onassis Lectures in Embedded Systems,
Crete, 24 July 2008

Joint work with

Ittai Balaban, Yonit Kesten, Lenore Zuck

Verification of Progress, Crete, July 2008

Verification of Progress A. Pnueli

Contradicting our Guest of Honor

Joseph claimed:

We do not know how to construct correct software, in a systematic way
similar to the ones used in other Engineering disciplines.

Verification of Progress, Crete, July 2008 1

Verification of Progress A. Pnueli

Contradicting our Guest of Honor

Joseph claimed:

We do not know how to construct correct software, in a systematic way
similar to the ones used in other Engineering disciplines.

My version:

• He is too modest!

• We do know how to construct correct software systematically, partly due to
Joseph’s important contribution.

• We are not ready to pay the price.

• Software is the discipline in which it is cheapest to construct badly designed
artifacts. That art is very widely practiced.

Perhaps summarize as:

We do not know how to construct correct software economically.

Verification of Progress, Crete, July 2008 2

Verification of Progress A. Pnueli

Taming Software Complexity

There are two ways to overcome software complexity:

• Composition — Infer properties of systems from the properties of their
components. Constructively: Build correct systems from correct components.

• Abstraction — Verify the desired property over an abstracted (simpler) version
of the program. Constructively: Start with a correct abstract version of the
program and derive an effective implementation by a sequence of stepwise
refinement transformations.

The methods are not disjoint. In compositional verification one uses abstraction
in order to represent the environment of a component.

Verification of Progress, Crete, July 2008 3

Verification of Progress A. Pnueli

The Verification Problem

Given a system (program, HW design) S and a property ϕ, ascertain that

S |= ϕ

That is, all behaviors (executions) of S satisfy ϕ.

In practice, this is usually “established” by testing. Full coverage not guaranteed.

Obviously, solving the verification problems is essential for the construction of
correct and reliable programs.

Verification of Progress, Crete, July 2008 4

Verification of Progress A. Pnueli

Formal Verification

Establish S |= ϕ with mathematical certainty. Two (and a half) methods have been
proposed:

Algorithmic Verification (Model Checking)
For finite-state systems, systematically explore all possible behaviors.

+ Fully automatic.

– Restricted to (not too big) finite-state systems.

Deductive Verification
Devise auxiliary assertions (invariants) and ranking functions (variants) and
establish, using automated theorem provers, the validity of proof rules (e.g.
induction).

+ Complete. Applicable to infinite-state systems (programs).

– Requires user expertise and ingenuity.

Verification of Progress, Crete, July 2008 5

Verification of Progress A. Pnueli

Third Method – Abstraction

Compute (characterize) all behaviors of system S and then examine whether
property ϕ is satisfied by all of them.

Usually intractable. So instead of analyzing S we analyze an abstracted version
of S.

+ Requires less user ingenuity. Often the creative step is the selection of the
abstract domain and abstraction mapping.

– Standard method can deal with only a subset of the properties one may wish
to verify

Resolving the last deficiency is what these lectures are about.

Verification of Progress, Crete, July 2008 6

Verification of Progress A. Pnueli

AAV: Abstraction Aided Verification
An Obvious idea:

• Abstract system S into S
A

– a simpler system, but admitting more behaviors.

• Verify property for the abstracted system S
A
.

• Conclude that property holds for the concrete system.

Approach is particularly impressive when abstracting an infinite-state system into
a finite-state one.

Technically , Define the methodology of Verification by Finitary Abstraction
(VFA) as follows:

To prove D |= ψ,

• Abstract D into a finite-state system Dα and the specification ψ into a
propositional LTL formula ψα.

• Model check Dα |= ψα.

The question considered here is finding instantiations of this general methodology
which are sound and (relatively) complete for both safety and liveness properties.

Verification of Progress, Crete, July 2008 7

Verification of Progress A. Pnueli

State Abstraction

Based on the notion of abstract interpretation [CC77]. There are, however, several
technical differences.

Let Σ denote the set of states of an FDS D – the concrete states. Let α : Σ 7→ Σ
A

be a mapping of concrete into abstract states. α is finitary if Σ
A

is finite.

We consider abstraction mappings which are presented by a set of equations
α : (u1 = E1(V), . . . , un = En(V)) (or more compactly, V

A
= Eα(V)), where

V
A

= {u1, . . . , un} are the abstract state variables and V are the concrete
variables.

Verification of Progress, Crete, July 2008 8

Verification of Progress A. Pnueli

Fair Discrete Systems

As a computational model for reactive systems, we take fair discrete system (FDS)
D = 〈V,Θ, ρ,J , C〉 consisting of:

• V – A finite set of typed state variables. A V -state s is an interpretation of V .
ΣV – the set of all V -states.

• Θ – An initial condition. A satisfiable assertion that characterizes the initial
states.

• ρ – A transition relation. An assertion ρ(V, V ′), referring to both unprimed
(current) and primed (next) versions of the state variables.

For example, x′ = x+ 1 corresponds to the assignment x := x+ 1.

• J = {J1, . . . , Jk} A set of justice (weak fairness) requirements. Ensure that a
computation has infinitely many Ji-states for each Ji, i = 1, . . . , k.

• C = {〈p1, q1〉, . . . 〈pn, qn〉} A set of compassion (strong fairness) requirements.
Infinitely many pi-states imply infinitely many qi-states.

Verification of Progress, Crete, July 2008 9

Verification of Progress A. Pnueli

Computations
Let D be an FDS for which the above components have been identified. The state
s′ is defined to be a D-successor of state s if

〈s, s′〉 |= ρ
D
(V, V ′).

We define a computation of D to be an infinite sequence of states

σ : s0, s1, s2, ...,

satisfying the following requirements:

• Initiality: s0 is initial, i.e., s0 |= Θ.

• Consecution: For each j ≥ 0, the state sj+1 is a D-successor of the state sj.

• Justice: For each J ∈ J , σ contains infinitely many J-positions

• Compassion: For each 〈p, q〉 ∈ C, if σ contains infinitely many p-positions, it
must also contain infinitely many q-positions.

A state is called feasible if it appears in some computation. There exists a
(symbolic) algorithm which computes all the feasible states in a given FDS.

Verification of Progress, Crete, July 2008 10

Verification of Progress A. Pnueli

Lifting a State Abstraction to Assertions

For an abstraction mapping α : V
A

= Eα(V) and an assertion p(V), we can lift the
state abstraction α to abstract p:

• The expanding α-abstraction (over approximation) of p is given by

α(p): ∃V :V
A

= Eα(V) ∧ p(V) ‖α(p)‖ = {α(s) | s ∈ ‖p‖}

An abstract state S belongs to ‖α(p)‖ iff there exists some concrete state
s ∈ α−1(S) such that s ∈ ‖p‖.

• The contracting abstraction (under approximation) is given by

α(p): ∀V : (V
A

= Eα(V)) → p(V) ‖α(p)‖ = {S | α−1(S) ⊆ ‖p‖}

An abstract state S belongs to ‖α(p)‖ iff all concrete states s ∈ α−1(S) satisfy
s ∈ ‖p‖.

Verification of Progress, Crete, July 2008 11

Verification of Progress A. Pnueli

Visual Illustration of the Two Abstraction Transformers

p

Verification of Progress, Crete, July 2008 12

Verification of Progress A. Pnueli

The Existential (expanding) Abstraction

α(p)p

Abstract state S belongs to α(p) if some concrete state α-mapped into S satisfies
p.

Verification of Progress, Crete, July 2008 13

Verification of Progress A. Pnueli

The Universal (contracting) Abstraction

α(p)α(p)p

Abstract state S belongs to α(p) if all concrete states α-mapped into S satisfy p.

In many cases, the abstraction α is precise with respect to the assertion p. This
is when p does not distinguish between two concrete states which are mapped by
α to the same abstract state. In such cases

α(p) = α(p)

Verification of Progress, Crete, July 2008 14

Verification of Progress A. Pnueli

Sound Joint Abstraction

For a positive normal form temporal formula ψ, we define ψα to be the formula
obtained by replacing every (maximal) state sub-formula p ∈ ψ by α(p). Note that
α(p) = ¬α(¬p).

For an FDS D = 〈V,Θ, ρ,J , C〉, we define the α-abstracted version
Dα = 〈V

A
,Θα, ρα,J α, Cα〉, where

Θα = α(Θ)
ρα = α(ρ)
J α = {α(J) | J ∈ J }
Cα = {(α(p), α(q)) | (p, q) ∈ C}

Soundness:

If α is an abstraction mapping and D and ψ are abstracted according to the recipes
presented above, then

Dα |= ψα implies D |= ψ.

Verification of Progress, Crete, July 2008 15

Verification of Progress A. Pnueli

Rationale for Using Opposite Abstractions

In order to verify

‖D‖ ⊆ ‖ψ‖

by abstraction, we actually prove

‖D‖ ⊆ ‖α(D)‖ ⊆ ‖α(ψ)‖ ⊆ ‖ψ‖

Verification of Progress, Crete, July 2008 16

Verification of Progress A. Pnueli

Example: Program INCREASE

Consider the program

y : integer initially y = 0
[

ℓ0 : while y ≥ 0 do [ℓ1 : y := y + 1]
ℓ2 :

]

Assume we wish to verify the property (y > 0) for program INCREASE. This
property states that, eventually, y becomes positive and remins positive forever.

Introduce the abstract variable Y : {−1, 0,+1}.

The abstraction mapping α is specified by the defining expression:

α : [Y = sign(y)]

where sign(y) is defined to be −1, 0, or 1, according to whether y is negative,
zero, or positive, respectively.

Verification of Progress, Crete, July 2008 17

Verification of Progress A. Pnueli

The Abstracted Version

With the mapping α, we obtain the abstract version of INCREASE, called
INCREASEα:

Y : {−1, 0,+1} initially Y = 0








ℓ0 : while Y ∈ {0, 1} do



ℓ1 : Y :=

















if Y = −1
then {−1, 0}
else +1





















ℓ2 :









The original invariance property ψ: (y > 0), is abstracted into:

ψα: (Y = +1),

which can be model-checked over INCREASEα, yielding
INCREASEα |= (Y = +1), from which we infer

INCREASE |= (y > 0)

Verification of Progress, Crete, July 2008 18

Verification of Progress A. Pnueli

A Case with No Conclusions

Reconsider program INCREASE, but this time with the property

ψ2 : (0 ≤ y ≤ 10)

Abstracting this property in a way consistent with the abstraction function
Y = sign(y), we obtain the abstraction

ψα
2 = α(ψ2) : (Y = 0)

Since INCREASEα 6|= (Y = 0), we can draw no conclusions about program
INCREASE and property ψ2.

• Note that if, instead of α(ψ2), we would have taken

α(ψ2) : (Y ∈ {0, 1}),

we would be led to the false conclusion

INCREASE |= (0 ≤ y ≤ 10)

Thus, it is essential to under-approximate the property.

Verification of Progress, Crete, July 2008 19

Verification of Progress A. Pnueli

Predicate Abstraction

The above style of abstraction abstracts each program variable separately. Such
abstraction preserves the variable structure of the program. This is not the most
general mode of abstraction, nor is it the most useful.

Let p1, p2, . . . , pk be a set of assertions (state formulas) referring to the data (non-
control) state variables. We refer to this set as the predicate base. Usually, we
include in the base all the atomic formulas appearing within conditions in the
program P and within the temporal formula ψ.

Following [GS97], define a predicate abstraction to be an abstraction mapping of
the form

α: {Bp1
= p1, Bp2

= p2, . . . , Bpk
= pk}

where Bp1
, Bp2

, . . . , Bpk
is a set of abstract boolean variables, one corresponding

to each assertion appearing in the predicate base.

Verification of Progress, Crete, July 2008 20

Verification of Progress A. Pnueli

Example: Program BAKERY-2
local y1, y2 : natural initially y1 = y2 = 0

P1 ::

















ℓ0 :loop forever do












ℓ1 : Non-Critical
ℓ2 : y1 := y2 + 1
ℓ3 : await y2 = 0 ∨ y1 < y2
ℓ4 : Critical
ℓ5 : y1 := 0





























P2 ::

















m0 :loop forever do












m1 : Non-Critical
m2 : y2 := y1 + 1
m3 : await y1 = 0 ∨ y2 ≤ y1
m4 : Critical
m5 : y2 := 0





























The temporal properties for program BAKERY-2 are
ψexc : ¬(at−ℓ4 ∧ at−m4) −− Mutual Exclusion (safety)
ψacc : (at−ℓ2 → at−ℓ4) −− Accessibility for P1 (liveness)

Verification of Progress, Crete, July 2008 21

Verification of Progress A. Pnueli

Abstracting Program BAKERY-2
Define abstract variables By1=0, By2=0, and By1<y2

.

local By1=0, By2=0, By1<y2
: boolean

where By1=0 = By2=0 = 1, By1<y2
= 0

P1 ::

















ℓ0 :loop forever do












ℓ1 : Non-Critical
ℓ2 : (By1=0, By1<y2

) := (0, 0)
ℓ3 : await By2=0 ∨ By1<y2

ℓ4 : Critical
ℓ5 : (By1=0, By1<y2

) := (1,¬By2=0)





























P2 ::

















m0 :loop forever do












m1 : Non-Critical
m2 : (By2=0, By1<y2

) := (0, 1)
m3 : await By1=0 ∨ ¬By1<y2

m4 : Critical
m5 : (By2=0, By1<y2

) := (1, 0)





























The abstracted properties can now be model-checked.

Verification of Progress, Crete, July 2008 22

Verification of Progress A. Pnueli

The Question of Completeness

We have claimed above that the VFA method is sound. How about completeness?

Completeness means that, for every FDS D and temporal property ψ such that
D |= ψ, there exists a finitary abstraction mapping α such that Dα |= ψα.

At this point we can only claim completeness for the special case that ψ is an
invariance property.

Claim 1. [Completeness for Invariance Properties]
Let D be an FDS and ψ : p be an invariance property such that D |= p. Then
there exists a finitary abstraction mapping α such that Dα |= α(p).

In fact, the proof shows that there always exists a predicate abstraction validating
the invariance property.

Verification of Progress, Crete, July 2008 23

Verification of Progress A. Pnueli

Sketch of the Proof
Like many completeness proofs in logic, the proof of this theorem is
straightforward but not very useful.

Let D = 〈V,Θ, ρ, . . .〉 be an FDS and p be an assertion such that D |= p. We
will show that there exists a finitary abstraction α which transforms the verification
problem D |= p into a simple finite-state problem.

By the deductive theory of temporal verification, D |= p implies the existence
of an assertion ϕ satisfying the following 3 premises:

Θ → ϕ
ϕ ∧ ρ → ϕ′

ϕ → p

θ ϕ p

As the abstraction mapping, we take α : Bϕ = ϕ using a single abstract boolean
variable Bϕ which is true whenever the corresponding concrete state satisfies ϕ.
This leads to the following abstractions:

Verification of Progress, Crete, July 2008 24

Verification of Progress A. Pnueli

Proof Continued

θ ϕ p

The abstractions:

System Dα Property ψα

V : Bϕ : boolean
α(Θ) : Bϕ

α(ρ) : Bϕ ∧B′

ϕ ∨ · · ·

BϕBϕ

α(p) = Bϕ

The only computation of Dα is σα : Bϕ, Bϕ, It follows that Dα |= ψα.

Verification of Progress, Crete, July 2008 25

Verification of Progress A. Pnueli

Inadequacy of State Abstraction for Proving Liveness

Not all properties can be proven by pure finitary state abstraction.
Consider the program LOOP.

y: natural
ℓ0 : while y > 0 do

[

ℓ1 : y := y − 1
ℓ2 : skip

]

ℓ3 :

Termination of this program cannot be proven by pure finitary abstraction. For
example, the abstraction α : IN 7→ {0,+1} leads to the abstracted program

Y : {0,+1}

ℓ0 : while Y = +1 do
[

ℓ1 : Y := if Y = +1 then {0,+1} else 0
ℓ2 : skip

]

ℓ3 :

This abstracted program may diverge!

Verification of Progress, Crete, July 2008 26

Verification of Progress A. Pnueli

No Finitary Abstracion Can Lead to Termination

The fault with the abve example is not with the particular abstraction chosen. In
fact, no finitary abstraction can lead to a terminating program.

Why?

The above program has aribtrary long computations, but they all terminate. No
finite-state program can behave in such a manner.

Verification of Progress, Crete, July 2008 27

Verification of Progress A. Pnueli

Solution: Augment with a Non-Constraining Progress Monitor
y: natural











ℓ0 : while y > 0 do
[

ℓ1 : y := y − 1
ℓ2 : skip

]

ℓ3 :











‖|













dec : {−1, 0, 1}
compassion

(dec > 0,dec < 0)
always do
m0 : dec := sign(y − y′)













− LOOP − − MONITOR My −

Forming the cross product, we obtain:

y : natural
dec : {−1, 0, 1}
compassion (dec > 0,dec < 0)

ℓ0 : while y > 0 do
[

ℓ1 : (y, dec) := (y − 1, sign(y − y′))
ℓ2 : dec := sign(y − y′)

]

ℓ3 :

Verification of Progress, Crete, July 2008 28

Verification of Progress A. Pnueli

Abstracting the Augmented System

We obtain the program

Y : {0,+1}
dec : {−1, 0, 1}
compassion (dec > 0,dec < 0)

ℓ0 : while Y = +1 do












ℓ1 : (Y,dec) :=

















if Y = +1
then ({+1, 0}, 1)
else (0, 0)

















ℓ2 : dec := 0













ℓ3 :

Which always terminates, due to the compassion requirement (dec > 0, dec < 0).

Verification of Progress, Crete, July 2008 29

Verification of Progress A. Pnueli

A More Complicated Case

Sometimes we need a more complex progress measure:

y: natural

ℓ0 : while y > 1 do




ℓ1 : y := y − 2
ℓ2 : y := {y + 1, y}
ℓ3 : skip





ℓ4 :

To prove termination of this program we augment it by the monitor:

define δ = y + at−ℓ2
dec : {−1, 0, 1}
compassion (dec > 0, dec < 0)

m0 : always do
dec := sign(δ − δ′)

Verification of Progress, Crete, July 2008 30

Verification of Progress A. Pnueli

Complicated Case Continued

Augmenting and abstracting, we get:

Y : {0, one, large}
dec : {−1, 0, 1}
compassion (dec > 0,dec < 0)

ℓ0 : while Y = large do




ℓ1 : (Y,dec) := (sub2(Y), 1)
ℓ2 : (Y,dec) := {(add1(Y), 0), (Y, 1)}
ℓ3 : dec := 0





ℓ4 :

where,

sub2(Y) = if Y ∈ {0,one} then 0 else {0,one, large}

add1(Y) = if Y = 0 then one else large

This program always terminates

Verification of Progress, Crete, July 2008 31

Verification of Progress A. Pnueli

Verification by Ranking Abstraction

To verify that ψ is D-valid,

• Optionally choose one or more non-constraining progress monitors M1, . . . ,Mr

and let A = D ‖| M1 ‖| · · · ‖| Mr. In case this step is skipped, let A = D.

• Choose a finitary state abstraction mapping α and calculate Aα and ψα

according to the sound recipes.

• Model check Aα |= ψa.

• Infer D |= ψ.

Claim 2. The Ranking Abstraction method is complete, relative to deductive
verification [KP00].

That is, whenever there exists a deductive proof of D |= ψ, we can find a finitary
abstraction mapping α and a non-constraining progress monitor M , such that
Aα |= ψa. Constructs α and M are derived from the deductive proof.

Verification of Progress, Crete, July 2008 32

Verification of Progress A. Pnueli

Is it Just Deductive Verification in Dressing?

Why is this method better than deductive verification?

It is often the case that the user can identify (or conjecture) a set of possible
ranking elements, but does not know how to combine them into a single global
ranking function, which is required by deductive verification.

Verification of Progress, Crete, July 2008 33

Verification of Progress A. Pnueli

An Illustrative Example
Consider the following program NESTED-LOOPS:

x, y: natural

ℓ0 : x :=?
ℓ1 : while x > 0 do

















ℓ2 : y :=?
ℓ3 : while y > 0 do

[

ℓ4 : y := y − 1
ℓ5 : skip

]

ℓ6 : x := x− 1
ℓ7 : skip

















ℓ8 :

A deductive termination proof of this program may be based on the ranking
function

(at−ℓ0, 5 · x+ 4 · at−ℓ7 + 3 · at−ℓ1 + 2 · at−ℓ2 + at−ℓ3..5, 3 · y + 2 · at−ℓ5 + at−ℓ3)

whose core constituents are x and y.

Verification of Progress, Crete, July 2008 34

Verification of Progress A. Pnueli

The Ranking Abstraction Approach
We augment the system with monitors for the ranking functions x, y, and abstract
the domain of x, y into {0,+1}. This yields:

X,Y : : {0,+1}
decx ,decy : {−1, 0, 1}
compassion (decx > 0,decx < 0), (decy > 0, decy < 0)

ℓ0 : (X,Y,decx , decy) := (?, Y, ?, 0)
ℓ1 : while X = +1 do

























ℓ2 : (X,Y,decx , decy) := (X, ?, 0, ?)
ℓ3 : while Y = +1 do





ℓ4 : (X,Y,decx ,decy) :=









if Y = 0 then (X, 0, 0, 0) else
{(X,+1, 0, 1), (X, 0, 0, 1)}









ℓ5 : decy := 0





ℓ6 : (X,Y,decx , decy) :=









if X = 0 then (0, Y, 0, 0) else
{(+1, Y, 1, 0), (0, Y, 1, 0)}









ℓ7 : decx := 0;

























ℓ8 :

Model checking this program, we find that it always terminates.

Verification of Progress, Crete, July 2008 35

Verification of Progress A. Pnueli

Main Features of Predicate Abstraction

Can be used for the automatic verification of some LTL (all invariance) properties
of infinite-state systems.

• Has a heuristic for an initial selection of a predicate base: Include all atomic
formulas appearing in the program and property.

• Has a heuristic for refining the abstraction (expanding the predicate base), as
a result of a spurious counter example.

• Does not require the specification of an inductive invariant. Sufficient to provide
the constituents from which such an invariant can be constructed by a boolean
combination.

• Can be used to derive the best inductive invariant expressible over the
predicate base: Abstract, compute Reach(P

A
), and then concretize.

Verification of Progress, Crete, July 2008 36

Verification of Progress A. Pnueli

In Comparison, Ranking Abstraction

Can be used, in conjunction with predicate abstraction, for the automatic
verification of all LTL properties (in particular, termination) of infinite-state
systems.

• Has a heuristic for an initial selection of a ranking core: Include all variables and
expressions which consistently increase (decrease) within loops. Specifically,
loop indices.

• Has a heuristic for refining the predicate or ranking abstraction (expanding the
predicate base or ranking core), as a result of a spurious counter example.

• Does not require the specification of a global ranking function. Sufficient to
provide the constituents from which such a function can be constructed by a
lexicographic tupling.

• Can be used to derive the best global ranking function expressible over the
ranking core: Use recursive SCC’s analysis.

Verification of Progress, Crete, July 2008 37

Verification of Progress A. Pnueli

A Counter-Example Guided Refinement of a Joint Abstraction
An abstract counter example of a liveness property has the form of a lasso:

SkS0 Sn

As a first step, we attempt to concretize this sequence into a program trace

σ : s0, . . . , sk, . . . , sn, sn+1

such that Si = α(si), for i ≤ n, and Sk = α(sn+1). There are three possible
outcomes to this attempt:

1. We succeed to find a concretization such that sn+1 = sk. In this case, there
exists a concrete counter example and the property is invalid over the original
system. In all other cases, the counter example is spurious.

2. The concretization is blocked at state si, i ≤ n, such that si has no concrete
successor belonging to α−1(Si+1). In this case, apply regular predicate
abstraction refinement (e.g. [BPR’02]).

3. The concretization completes, but sn+1 6= sk. In this case, apply ranking
refinement. A loop has been concretized into a spiral.

Verification of Progress, Crete, July 2008 38

Verification of Progress A. Pnueli

Ranking Refinement

Recall the structure of the abstract counter example.

SkS0 Sn

Assume that the labels of states Sk, . . . , Sn are ℓk, . . . , ℓn. Form the (concrete)
transition relation ρk..n,k defined by

ρk..n,k : ρ(ℓk, ℓk+1) ◦ · · · ◦ ρ(ℓn−1, ℓn) ◦ ρ(ℓn, ℓk)

This transition relation relates the values of variables in states sk and sn+1 such
that there exists a computation segment sk, . . . , sn, sn+1 passing through the
sequence of labels ℓk, . . . , ℓn, ℓk, respectively.

Also form the assertion ϕk = Sk[(p1, . . . , pr)/(B1, . . . , Br)] obtained by viewing
abstract state Sk as a boolean expression over the abstract variables B1, . . . , Br

and then substituting the predicate pi for each occurrence of variable Bi. This
assertion characterizes all the concrete states which are abstracted into Sk.

Verification of Progress, Crete, July 2008 39

Verification of Progress A. Pnueli

Expanding the Ranking Core

A sufficient condition which guarantees that the obtained lasso cannot be
concretized into an infinite computation is that the relation ρk..n,k be well founded
over all ϕk-states. Hence we search for a variable or an expression δ, such that

ϕk ∧ ρk..n,k → δ > δ′

Heuristics such as the ones expounded in [PR’04] can be used in order to identify
such expressions δ.

Having found such a δ, we add it to the ranking core. Abstract and try again.

Verification of Progress, Crete, July 2008 40

Verification of Progress A. Pnueli

Example

Reconsider a version of program NESTED-LOOPS:

x, y: natural initially x = y = 0
ℓ0 : x :=?

while x > 0 do








ℓ1 : y :=?
while y > 0 do
[

ℓ2 : y := y − 1
]

ℓ3 : x := x− 1









ℓ4 :

Apply joint abstraction with {X = sign(x), Y = sign(y), decy = sign(y−y′)}. Note
that the ranking core is incomplete.

Verification of Progress, Crete, July 2008 41

Verification of Progress A. Pnueli

The Abstracted program

With the abstraction {X = sign(x), Y = sign(y), decy = sign(y − y′)}, we obtain:

X,Y : : {0,+1} initially X = Y = 0
decy : {−1, 0, 1} initially decy = 0
compassion (decy > 0, decy < 0)

ℓ0 : X := {0, 1}
while X = 1 do








ℓ1 : (Y,decy) := (?, ?)
while Y = 1 do
[

ℓ2 : (Y,decy) := if Y = 0 then (0, 0) else {(0, 1), (1, 1)}
]

ℓ3 : X := if X = 0 then 0 else {0, 1}









ℓ4 :

Model checking this program for termination, we obtain the following counter-
example lasso:

S0 :〈Π : ℓ0,X : 0, Y : 0,Decy : 0〉,
S1 :〈Π : ℓ1,X : 1, Y : 0,Decy : 0〉, S2 :〈Π : ℓ2,X : 1, Y : 1,Decy : −1〉,
S3 :〈Π : ℓ3,X : 1, Y : 0,Decy : 1〉, S4 = S1

Verification of Progress, Crete, July 2008 42

Verification of Progress A. Pnueli

Concretizing and Refining

Concretizing the abstract trace

S0 :〈Π : ℓ0,X : 0, Y : 0,Decy : 0〉,
S1 :〈Π : ℓ1,X : 1, Y : 0,Decy : 0〉, S2 :〈Π : ℓ2,X : 1, Y : 1,Decy : −1〉,
S3 :〈Π : ℓ3,X : 1, Y : 0,Decy : 1〉, S4 = S1

we obtain:

s0 :〈π : ℓ0, x : 0, y : 0, decy : 0〉,
s1 :〈π : ℓ1, x : 4, y : 0, decy : 0〉, s2 :〈π : ℓ2, x : 4, y : 1, decy : −1〉,
s3 :〈π : ℓ3, x : 4, y : 0, decy : 1〉, s4 :〈π : ℓ1, x : 3, y : 0, decy : 0〉

We therefore compute ϕ1 : x > 0∧ y = 0 and ρ1..3,1 : x′ = x− 1∧x′ > 0. A natural
choice for additional rank is δ = x whose descent is implied by ρ1..3,1.

Verification of Progress, Crete, July 2008 43

Verification of Progress A. Pnueli

A Global Ranking Function From a Terminating Program

We will show how to extract a global ranking function from an abstract terminating
program. Assume that we constructed a state-transition graph containing all the
reachable states of the abstracted program.

The extraction algorithm can be described as follows:

• Decompose into MSCC’s, Sort topologically, and Rank sequentially.

• For each non-singular component:

Identify a compassion req. (decx i > 0, decx i < 0) violated by the
component.
Add xi to the ranking tuple.
Remove all edges entering (decx i > 0)-nodes.
Return to top for recursive processing of remaining subgraph.

Verification of Progress, Crete, July 2008 44

Verification of Progress A. Pnueli

Example

Analyzing abstracted program NESTED-LOOPS with ranking core consisting of
{x, y}, the program always terminates. The resulting state transition graph is:

Π : ℓ4, X : 0, Y : 0,Dx : 1,Dy : 0

Π : ℓ0, X : 0, Y : 0,Dx : 0,Dy : 0

Π : ℓ1, X : 1, Y : 0,Dx : −1,Dy : 0

Π : ℓ2, X : 1, Y : 1,Dx : 0,Dy : −1

Π : ℓ2, X : 1, Y : 1,Dx : 0,Dy : 1

Π : ℓ3, X : 1, Y : 0,Dx : 0,Dy : 1

Π : ℓ1, X : 1, Y : 0,Dx : 1,Dy : 0

Verification of Progress, Crete, July 2008 45

Verification of Progress A. Pnueli

Decompose, Sort, and Rank

MSCC’s decomposition, topologically sorting, and sequentially ranking, yields:

1

Π : ℓ4,X : 0, Y : 0,Dx : 1,Dy : 0 0

Π : ℓ0,X : 0, Y : 0,Dx : 0,Dy : 0 3

Π : ℓ1,X : 1, Y : 0,Dx : −1,Dy : 0 2

Π : ℓ2,X : 1, Y : 1,Dx : 0,Dy : −1 1

Π : ℓ2,X : 1, Y : 1,Dx : 0,Dy : 1 1

Π : ℓ3,X : 1, Y : 0,Dx : 0,Dy : 1 1

Π : ℓ1,X : 1, Y : 0,Dx : 1,Dy : 0

Non-singular component is unfair w.r.t (Dx > 0,Dx < 0).

Verification of Progress, Crete, July 2008 46

Verification of Progress A. Pnueli

Add x to Ranking

Add x to ranking, and remove edges entering (Dx > 0)-nodes.

(1, x)

Π : ℓ4,X : 0, Y : 0,Dx : 1,Dy : 0 0

Π : ℓ0,X : 0, Y : 0,Dx : 0,Dy : 0 3

Π : ℓ1,X : 1, Y : 0,Dx : −1,Dy : 0 2

Π : ℓ2,X : 1, Y : 1,Dx : 0,Dy : −1 (1, x)

Π : ℓ2,X : 1, Y : 1,Dx : 0,Dy : 1 (1, x)

Π : ℓ3,X : 1, Y : 0,Dx : 0,Dy : 1 (1, x)

Π : ℓ1,X : 1, Y : 0,Dx : 1,Dy : 0

Note that component is no longer strongly connected.

Verification of Progress, Crete, July 2008 47

Verification of Progress A. Pnueli

Decompose, Sort, and Rank Subgraph

Applying the decomposition+ranking to the unraveled subgraph yields:

(1, x, 3)

Π : ℓ4,X : 0, Y : 0,Dx : 1,Dy : 0 0

Π : ℓ0,X : 0, Y : 0,Dx : 0,Dy : 0 3

Π : ℓ1,X : 1, Y : 0,Dx : −1,Dy : 0 2

Π : ℓ2,X : 1, Y : 1,Dx : 0,Dy : −1 (1, x, 2)

Π : ℓ2,X : 1, Y : 1,Dx : 0,Dy : 1 (1, x, 1)

Π : ℓ3,X : 1, Y : 0,Dx : 0,Dy : 1 (1, x, 0)

Π : ℓ1,X : 1, Y : 0,Dx : 1,Dy : 0

Note that the non-singular component is unfair w.r.t (Dy > 0,Dy < 0).

Verification of Progress, Crete, July 2008 48

Verification of Progress A. Pnueli

Add y to the Ranking
Processing the 〈Π : ℓ2,X : 1, Y : 1,Dx : 0,Dy : 1〉 component, we add y to its
ranking and remove all incoming edges. This yields:

(1, x, 3)

Π : ℓ4, X : 0, Y : 0,Dx : 1,Dy : 0 0

Π : ℓ0, X : 0, Y : 0,Dx : 0,Dy : 0 3

Π : ℓ1, X : 1, Y : 0,Dx : −1,Dy : 0 2

Π : ℓ2, X : 1, Y : 1,Dx : 0,Dy : −1 (1, x, 2)

Π : ℓ2, X : 1, Y : 1,Dx : 0,Dy : 1 (1, x, 1, y)

Π : ℓ3, X : 1, Y : 0,Dx : 0,Dy : 1 (1, x, 0)

Π : ℓ1, X : 1, Y : 0,Dx : 1,Dy : 0

The resulting graph is acyclic, implying that the algorithm terminated.

Verification of Progress, Crete, July 2008 49

Verification of Progress A. Pnueli

The Final Global Ranking

Summarizing all that was accumulated, yields the following global ranking:

(1, x, 3)

Π : ℓ4, X : 0, Y : 0,Dx : 1,Dy : 0 0

Π : ℓ0, X : 0, Y : 0,Dx : 0,Dy : 0 3

Π : ℓ1, X : 1, Y : 0,Dx : −1,Dy : 0 2

Π : ℓ2, X : 1, Y : 1,Dx : 0,Dy : −1 (1, x, 2)

Π : ℓ2, X : 1, Y : 1,Dx : 0,Dy : 1 (1, x, 1, y)

Π : ℓ3, X : 1, Y : 0,Dx : 0,Dy : 1 (1, x, 0)

Π : ℓ1, X : 1, Y : 0,Dx : 1,Dy : 0

Verification of Progress, Crete, July 2008 50

Verification of Progress A. Pnueli

Padding to the Right

If necessary, we can make all tuples to be of length 4, by adding zeros to the right.

(1, x, 3, 0)

Π : ℓ4, X : 0, Y : 0,Dx : 1,Dy : 0 (0, 0, 0, 0)

Π : ℓ0, X : 0, Y : 0,Dx : 0,Dy : 0 (3, 0, 0, 0)

Π : ℓ1, X : 1, Y : 0,Dx : −1,Dy : 0 (2, 0, 0, 0)

Π : ℓ2, X : 1, Y : 1,Dx : 0,Dy : −1 (1, x, 2, 0)

Π : ℓ2, X : 1, Y : 1,Dx : 0,Dy : 1 (1, x, 1, y)

Π : ℓ3, X : 1, Y : 0,Dx : 0,Dy : 1 (1, x, 0, 0)

Π : ℓ1, X : 1, Y : 0,Dx : 1,Dy : 0

Verification of Progress, Crete, July 2008 51

Verification of Progress A. Pnueli

Conclusions

• Ranking abstraction should be considered as an inseparable companion to
predicate abstraction. Only their combination can verify the full set of LTL
properties.

• We call upon implementors of abstraction-based software verification systems,
such as SLAM and BLAST, to enhance the proving power of their systems by
adding the component of ranking abstraction.

• Like predicate abstraction, ranking abstraction is easier to apply than its
deductive counterpart, because it is sufficient to provide only the constituents
and let the model checker figure out their right combination.

• We should not consider abstraction as replacing deduction, but rather as
complementing and enhancing deduction.

• Never pay too much attention to completeness theorems. They may provide a
misleading view of the usefulness of a method.

Verification of Progress, Crete, July 2008 52

