
von Neumann and the Current Computer Security
Landscape

Angelos D. Keromytis
Columbia University

angelos@cs.columbia.edu

Wednesday, July 23, 2008

This talk

• Overview of the von Neumann computer architecture

• Security implications

• software vulnerabilities

• limitations in detecting malware

• defenses that play on the architecture

2

Wednesday, July 23, 2008

John von Neumann

• Mathematician, instrumental in the
developing

• quantum mechanics

• cellular automata

• economics & game theory

• nuclear physics

• computer architecture

3

John von
Neumann
1903-1957

Wednesday, July 23, 2008

von Neumann architecture

• Unified memory for instructions and data

• Contrast: Harvard architecture

• Specified in tech report on EDVAC in 1945

• Similar ideas floating previously

4

• Simplicity led to wide acceptance

• Practically all modern computers
based on this architecture

Wednesday, July 23, 2008

Corollary

• Code and data look “the same”

• is 0x90 data or an x86 instruction?

• We must somehow differentiate between code and
data

• Program and/or OS must know

• debugging is easy (or easier)

5

Wednesday, July 23, 2008

Corollary (2)

• Code can be treated as data

• self-modifying code

• dynamic code generation

• debugging

• Code is treated as data

• copy a program vs. run a program

6

Wednesday, July 23, 2008

Performance implications

• Performance bottleneck due to shared memory bus

• “von Neumann bottleneck”

• led to the development of caches, branch
prediction, etc.

• For many years, this was the main issue

7

Wednesday, July 23, 2008

Implications for reliability

• Mistaking data and instructions leads to undefined
behavior

• CPU will try to execute data as instructions

• for random data, this will cause exception
(memory, opcode, etc.)

• code-as-data can be modified

• RO code pages to avoid mistakes

8

Wednesday, July 23, 2008

Implications for security

• What if random data is not random?

• data is/contains code

• code can be written by attacker

• Program will end up executing foreign code that will
do the attacker’s work

• Privileges of program/user or of program source

9

Wednesday, July 23, 2008

Security problems

• Viruses

• Detection of malware

• Code injection attacks

• buffer overflows

• SQL injection

• Cross-site Scripting (XSS)

10

Wednesday, July 23, 2008

Viruses

• Self-propagating code

• First “large scale” outbreaks in 1981, for MS-DOS

• infected executable files (.exe, .com)

• treated code (programs) as data

• modified binaries to insert themselves

11

Wednesday, July 23, 2008

Virus-infected file

12

Program

Virus

Program

Wednesday, July 23, 2008

Virus detection

• Anti-virus programs typically look for
“signatures” (byte strings) of known viruses

• prior to program execution, after download,
incoming email attachments, etc.

• Attackers’ response: polymorphism

13

Wednesday, July 23, 2008

Polymorphism

• Two-part viruses

• small first part (decoder)
decrypts second part

• second part contains main
attack payload

• Signatures on second part are
difficult/impossible

• Small decoder means signatures
are likely to have false positives

Wednesday, July 23, 2008

Polymorphism
• Increasing use in all kinds of malware

• viruses, worms, trojans, etc.

• self-extracting “packers”

15

• Attackers can create large
numbers of decoders

Wednesday, July 23, 2008

Code injection attacks

• Programs may be tricked into treating input data as
code

• data received over the network or otherwise
supplied by an untrusted user

• exploit weaknesses in input validation to overwrite
control information

16

Wednesday, July 23, 2008

Buffer overflow attacks

• Specific instance of code injection in C/C++ (and similar
languages)

• function return address in function frame is overwritten
with attacker-controlled data

• same data contains attack code

17

Return pointer
char *str;

char buf[100]
caller(char *str) {
 char buf[100];
 strcpy(buf, str);
}

Return pointer
char *s1;
char *s2;

caller()

strcpy()

High addresses

program stack

Wednesday, July 23, 2008

Buffer overflow attacks

• Specific instance of code injection in C/C++ (and similar
languages)

• function return address in function frame is overwritten
with attacker-controlled data

• same data contains attack code

17

Return pointer
char *str;

char buf[100]
caller(char *str) {
 char buf[100];
 strcpy(buf, str);
}

Return pointer
char *s1;
char *s2;

RRReeeettttuuuurrrnnn ppppooooiiinnntttteeerrr
ccccchhhhhhaaaaarrrrr *****ssssstttttrrrrr;;;;;h *

ccccchhhhhhaaaaarrrrr bbbbbbuuuuuffffff[[[[[[111111000000000000]]]]]] caller()

strcpy()

High addresses

program stack

Wednesday, July 23, 2008

Note on buffer overflows

• There are many different variants

• not all inject code

• e.g., “return-into-libc” attacks

• some compromise control data in other ways

• All end up subverting the control flow of the program
to meet attacker’s goals

18

Wednesday, July 23, 2008

Real problem

• Many vulnerabilities discovered daily on commercial
and open-source software

• enable remote compromise

• typically also confer superuser privileges to
attacker

• enabling technology for fast-spreading worms

19

Wednesday, July 23, 2008

Buffer overflow prevalence

20

Source: NIST

Wednesday, July 23, 2008

Buffer overflow prevalence

21

Wednesday, July 23, 2008

Code injection prevalence

22

Wednesday, July 23, 2008

Code injection prevalence

23

Wednesday, July 23, 2008

Defenses?

• Network and A/V-style defenses seem problematic (re:
polymorphism)

• Drastic change (e.g., safe languages) is slow and difficult

• Move closer to the host/software

• detect symptoms of attack

• slow and difficult to scale defenses

• Model legitimate inputs rather than detect anomalous inputs

• Open area(s) of research and practice

24

Wednesday, July 23, 2008

Some interesting defenses

• Hardware support (NX bit)

• Secrecy-based separation

• Instruction-Set Randomization

• Address Space Obfuscation

25

Wednesday, July 23, 2008

ISR

26

key

Server
Executable

ISR
Ervexuble
stareceta

Wednesday, July 23, 2008

Randomization

Wednesday, July 23, 2008

Randomization

0x08048262 <foobar+122>: add $0x10,%esp
0x08048265 <foobar+125>: mov 0x8(%ebp),%eax
0x08048268 <foobar+128>: mov 0x8(%ebp),%edx
0x0804826b <foobar+131>: mov (%edx),%edx
0x0804826d <foobar+133>: add $0xa,%edx
0x08048270 <foobar+136>: mov %edx,(%eax)

Wednesday, July 23, 2008

Randomization

0x08048262 <foobar+122>: add $0x10,%esp
0x08048265 <foobar+125>: mov 0x8(%ebp),%eax
0x08048268 <foobar+128>: mov 0x8(%ebp),%edx
0x0804826b <foobar+131>: mov (%edx),%edx
0x0804826d <foobar+133>: add $0xa,%edx
0x08048270 <foobar+136>: mov %edx,(%eax)

code_slice XOR 0xA7 produces:

Wednesday, July 23, 2008

Randomization

0x08048262 <foobar+122>: add $0x10,%esp
0x08048265 <foobar+125>: mov 0x8(%ebp),%eax
0x08048268 <foobar+128>: mov 0x8(%ebp),%edx
0x0804826b <foobar+131>: mov (%edx),%edx
0x0804826d <foobar+133>: add $0xa,%edx
0x08048270 <foobar+136>: mov %edx,(%eax)

0x08048262 <foobar+122>: and $0x63,%al
0x08048264 <foobar+124>: mov $0x2c,%bh
0x08048266 <foobar+126>: loop 0x8048217 <foobar+47>
0x08048268 <foobar+128>: sub $0xf2,%al
0x0804826a <foobar+130>: scas %es:(%edi),%eax
0x0804826b <foobar+131>: sub $0xb5,%al
0x0804826d <foobar+133>: and $0x65,%al
0x0804826f <foobar+135>: lods %ds:(%esi),%eax
0x08048270 <foobar+136>: cs

code_slice XOR 0xA7 produces:

Wednesday, July 23, 2008

SQL injection

• Code injection attacks are not limited to binaries

28

Web
Server

Database
ServerUser

SQL

SELECT * from items
where customer_name=’$USERNAME’;

Wednesday, July 23, 2008

SQL injection

• Code injection attacks are not limited to binaries

28

Web
Server

Database
ServerUser

SQL

username=angelos

SELECT * from items
where customer_name=’$USERNAME’;

Wednesday, July 23, 2008

SQL injection

• Code injection attacks are not limited to binaries

28

Web
Server

Database
ServerUser

SQL

username=angelos

SELECT * from items
where customer_name=’angelos’;

SELECT * from items
where customer_name=’$USERNAME’;

Wednesday, July 23, 2008

SQL injection

• Code injection attacks are not limited to binaries

28

Web
Server

Database
ServerUser

SQL

SELECT * from items
where customer_name=’angelos’;

SELECT * from items
where customer_name=’$USERNAME’;

Wednesday, July 23, 2008

SQL injection

• Code injection attacks are not limited to binaries

28

Web
Server

Database
ServerUser

SQL

SELECT * from items
where customer_name=’$USERNAME’;

Wednesday, July 23, 2008

SQL injection

• Code injection attacks are not limited to binaries

28

Web
Server

Database
ServerUser

SQL

SELECT * from items
where customer_name=’$USERNAME’;

username=’ or username is not null
or username = ‘

Wednesday, July 23, 2008

SQL injection

• Code injection attacks are not limited to binaries

28

Web
Server

Database
ServerUser

SQL

SELECT * from items
where customer_name=’$USERNAME’;

username=’ or username is not null
or username = ‘

SELECT * from items
where customer_name=’’ or
 username is not null or
 username = ‘’;

Wednesday, July 23, 2008

Significance

• Another instance of mixing data and code

• not direct result of von Neumann architecture

• result of decades of mentally ignoring the
difference between code and data

29

Wednesday, July 23, 2008

SQL injection prevalence

30

Wednesday, July 23, 2008

SQL injection prevalence

31

Wednesday, July 23, 2008

Command injection

• The problem does not end with SQL injection

• any interpreted language that receives untrusted
input is susceptible

• PHP, Perl, shell script, ...

32

Wednesday, July 23, 2008

Taint tracking

• Modify runtime environment (e.g., Perl interpreter)
to track use of data from untrusted sources

• alert/stop if such data is used in sensitive
operations

• Variant for use with binaries

• use emulation or hardware support

• very slow

33

Wednesday, July 23, 2008

SQL randomization

• Apply randomization to SQL templates

• Parameterize all keywords and operators

34

select gender, avg(age)

from cs101.students

where dept = %d

group by gender

select123 gender, avg123 (age)

from123 cs101.students

where123 dept =123 %d

group123 by123 gender

Database Server

CGI
Scripts

DB

Middle!
ware

Result

Set

Result

Set

Standard

SQL

Randomized

SQL

Requests
HTTP

Client

D
a
t
a
b
a
s
e

Proxy

Web Server

• Use de-randomizing proxy between client application and
DBMS

Wednesday, July 23, 2008

Cross-Site Scripting (XSS)

• Web-oriented class of vulnerabilities

• Bypasses browser security sandbox

• convinces browser (and user) that source of
program is different (trusted?) site

• Programs are typically Javascript

• can be other active content

35

Wednesday, July 23, 2008

How does it work?

• Some servers will mirror input from the URL in the returned
page

• error pages, naive applications, etc.

• Browsers don’t know the provenance of data in a returned page

36

Web
Server

Browser

Wednesday, July 23, 2008

How does it work?

• Some servers will mirror input from the URL in the returned
page

• error pages, naive applications, etc.

• Browsers don’t know the provenance of data in a returned page

36

Web
Server

Browser

GET /foo

URL /foo not found

Wednesday, July 23, 2008

How does it work?

• Some servers will mirror input from the URL in the returned
page

• error pages, naive applications, etc.

• Browsers don’t know the provenance of data in a returned page

36

Web
Server

Browser

Wednesday, July 23, 2008

How does it work?

• Some servers will mirror input from the URL in the returned
page

• error pages, naive applications, etc.

• Browsers don’t know the provenance of data in a returned page

36

Web
Server

Browser

GET /foo

URL /foo not found

Wednesday, July 23, 2008

XSS in operation

37

Trusted
Web

Server

Untrusted
Web

Server

Browser

Wednesday, July 23, 2008

XSS in operation

37

Trusted
Web

Server

Untrusted
Web

Server

Browser

Get page

Wednesday, July 23, 2008

XSS in operation

37

Trusted
Web

Server

Untrusted
Web

Server

Browser

Get page

Redirect with
JS embedded in URL

Wednesday, July 23, 2008

XSS in operation

37

Trusted
Web

Server

Untrusted
Web

Server

Browser

Get page

Redirect with
JS embedded in URL

JS mirrored
to browser

Wednesday, July 23, 2008

Notes on XSS

• Injected JS appears to come from trusted website

• may fool the user through direct interaction

• e.g., fake login prompt

• can access cookies, issue direct requests against the trusted
website

• particularly powerful if user does not log out

38

Wednesday, July 23, 2008

XSS prevalence

39

Wednesday, July 23, 2008

XSS prevalence

40

Wednesday, July 23, 2008

XSS defenses

• No good known defenses

• Current state of practice

• fix server configurations

• fix applications

• do not allow JS or other active content(?) from
unknown websites

41

Wednesday, July 23, 2008

The future?

• Continuing mixing of code and data

• data serialization formats such as JSON

• “rich” document formats

• Office, PDF, etc.

• increasing focus on browser

42

Wednesday, July 23, 2008

Conclusion

• Overview of a large and important class of software
vulnerabilities

• widely exploited on a daily basis

• difficult to get it right

• programmer education is lacking

• Historical perspective on architectural choices and their
impact on security 40+ years later

• How do we change things, given current course?

43

Wednesday, July 23, 2008

