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This talk

• Overview of the von Neumann computer architecture

• Security implications

• software vulnerabilities

• limitations in detecting malware

• defenses that play on the architecture
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John von Neumann

• Mathematician, instrumental in the 
developing

• quantum mechanics

• cellular automata

• economics & game theory

• nuclear physics

• computer architecture
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John von 
Neumann
1903-1957
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von Neumann architecture

• Unified memory for instructions and data

• Contrast: Harvard architecture

• Specified in tech report on EDVAC in 1945

• Similar ideas floating previously
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• Simplicity led to wide acceptance

• Practically all  modern computers 
based on this architecture
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Corollary

• Code and data look “the same”

• is 0x90 data or an x86 instruction?

• We must somehow differentiate between code and 
data

• Program and/or OS must know

• debugging is easy (or easier)
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Corollary (2)

• Code can be treated as data

• self-modifying code

• dynamic code generation

• debugging

• Code is treated as data

• copy a program vs. run a program
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Performance implications

• Performance bottleneck due to shared memory bus

• “von Neumann bottleneck”

• led to the development of caches, branch 
prediction, etc.

• For many years, this was the main issue
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Implications for reliability

• Mistaking data and instructions leads to undefined 
behavior

• CPU will try to execute data as instructions

• for random data, this will cause exception 
(memory, opcode, etc.)

• code-as-data can be modified

• RO code pages to avoid mistakes

8

Wednesday, July 23, 2008



Implications for security

• What if random data is not random?

• data is/contains code

• code can be written by attacker

• Program will end up executing foreign code that will 
do the attacker’s work

• Privileges of program/user or of program source
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Security problems

• Viruses

• Detection of malware

• Code injection attacks

• buffer overflows

• SQL injection

• Cross-site Scripting (XSS)
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Viruses

• Self-propagating code

• First “large scale” outbreaks in 1981, for MS-DOS

• infected executable files (.exe, .com)

• treated code (programs) as data 

• modified binaries to insert themselves

11
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Virus-infected file
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Program

Virus

Program
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Virus detection

• Anti-virus programs typically look for 
“signatures” (byte strings) of known viruses

• prior to program execution, after download, 
incoming email attachments, etc.

• Attackers’ response: polymorphism
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Polymorphism

• Two-part viruses

• small first part (decoder)  
decrypts second part

• second part contains main 
attack payload

• Signatures on second part are 
difficult/impossible

• Small decoder means signatures 
are likely to have false positives
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Polymorphism
• Increasing use in all kinds of malware

• viruses, worms, trojans, etc.

• self-extracting “packers”
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• Attackers can create large 
numbers of decoders
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Code injection attacks

• Programs may be tricked into treating input data as 
code

• data received over the network or otherwise 
supplied by an untrusted user

• exploit weaknesses in input validation to overwrite 
control information
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Buffer overflow attacks

• Specific instance of code injection in C/C++ (and similar 
languages)

• function return address in function frame is overwritten 
with attacker-controlled data

• same data contains attack code
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Return pointer
char *str;

char buf[100]
caller(char *str) {
    char buf[100];
    strcpy(buf, str);
}

Return pointer
char *s1;
char *s2;

caller()

strcpy()

High addresses

program stack
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Buffer overflow attacks

• Specific instance of code injection in C/C++ (and similar 
languages)

• function return address in function frame is overwritten 
with attacker-controlled data

• same data contains attack code
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Return pointer
char *str;

char buf[100]
caller(char *str) {
    char buf[100];
    strcpy(buf, str);
}

Return pointer
char *s1;
char *s2;

RRReeeettttuuuurrrnnn ppppooooiiinnntttteeerrr
ccccchhhhhhaaaaarrrrr *****ssssstttttrrrrr;;;;;h *

ccccchhhhhhaaaaarrrrr bbbbbbuuuuuffffff[[[[[[111111000000000000]]]]]] caller()

strcpy()

High addresses

program stack
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Note on buffer overflows

• There are many different variants

• not all inject code

• e.g., “return-into-libc” attacks

• some compromise control data in other ways

• All end up subverting the control flow of the program 
to meet attacker’s goals
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Real problem

• Many vulnerabilities discovered daily on commercial 
and open-source software

• enable remote compromise

• typically also confer superuser privileges to 
attacker

• enabling technology for fast-spreading worms

19

Wednesday, July 23, 2008



Buffer overflow prevalence
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Source: NIST
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Buffer overflow prevalence
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Code injection prevalence
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Code injection prevalence
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Defenses?

• Network and A/V-style defenses seem problematic (re: 
polymorphism)

• Drastic change (e.g., safe languages) is slow and difficult

• Move closer to the host/software

• detect symptoms of attack

• slow and difficult to scale defenses

• Model legitimate inputs rather than detect anomalous inputs

• Open area(s) of research and practice
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Some interesting defenses

• Hardware support (NX bit)

• Secrecy-based separation

• Instruction-Set Randomization

• Address Space Obfuscation

25

Wednesday, July 23, 2008



ISR
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Randomization
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Randomization

0x08048262 <foobar+122>: add    $0x10,%esp
0x08048265 <foobar+125>: mov    0x8(%ebp),%eax
0x08048268 <foobar+128>: mov    0x8(%ebp),%edx
0x0804826b <foobar+131>: mov    (%edx),%edx
0x0804826d <foobar+133>: add    $0xa,%edx
0x08048270 <foobar+136>: mov    %edx,(%eax)
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Randomization

0x08048262 <foobar+122>: add    $0x10,%esp
0x08048265 <foobar+125>: mov    0x8(%ebp),%eax
0x08048268 <foobar+128>: mov    0x8(%ebp),%edx
0x0804826b <foobar+131>: mov    (%edx),%edx
0x0804826d <foobar+133>: add    $0xa,%edx
0x08048270 <foobar+136>: mov    %edx,(%eax)

code_slice XOR 0xA7 produces:
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Randomization

0x08048262 <foobar+122>: add    $0x10,%esp
0x08048265 <foobar+125>: mov    0x8(%ebp),%eax
0x08048268 <foobar+128>: mov    0x8(%ebp),%edx
0x0804826b <foobar+131>: mov    (%edx),%edx
0x0804826d <foobar+133>: add    $0xa,%edx
0x08048270 <foobar+136>: mov    %edx,(%eax)

0x08048262 <foobar+122>: and    $0x63,%al
0x08048264 <foobar+124>: mov    $0x2c,%bh
0x08048266 <foobar+126>: loop   0x8048217 <foobar+47>
0x08048268 <foobar+128>: sub    $0xf2,%al
0x0804826a <foobar+130>: scas   %es:(%edi),%eax
0x0804826b <foobar+131>: sub    $0xb5,%al
0x0804826d <foobar+133>: and    $0x65,%al
0x0804826f <foobar+135>: lods   %ds:(%esi),%eax
0x08048270 <foobar+136>: cs

code_slice XOR 0xA7 produces:

Wednesday, July 23, 2008



SQL injection

• Code injection attacks are not limited to binaries

28

Web
Server

Database
ServerUser

SQL

SELECT * from items
where customer_name=’$USERNAME’;
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SQL injection

• Code injection attacks are not limited to binaries

28

Web
Server

Database
ServerUser

SQL

username=angelos

SELECT * from items
where customer_name=’$USERNAME’;
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SQL injection

• Code injection attacks are not limited to binaries
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Web
Server

Database
ServerUser

SQL

username=angelos

SELECT * from items
where customer_name=’angelos’;

SELECT * from items
where customer_name=’$USERNAME’;
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SQL injection

• Code injection attacks are not limited to binaries
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Web
Server

Database
ServerUser

SQL

SELECT * from items
where customer_name=’angelos’;

SELECT * from items
where customer_name=’$USERNAME’;
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SQL injection

• Code injection attacks are not limited to binaries
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SELECT * from items
where customer_name=’$USERNAME’;
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SQL injection

• Code injection attacks are not limited to binaries

28

Web
Server

Database
ServerUser

SQL

SELECT * from items
where customer_name=’$USERNAME’;

username=’ or username is not null 
or username = ‘
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SQL injection

• Code injection attacks are not limited to binaries

28

Web
Server

Database
ServerUser

SQL

SELECT * from items
where customer_name=’$USERNAME’;

username=’ or username is not null 
or username = ‘

SELECT * from items
where customer_name=’’ or
            username is not null or
            username = ‘’;
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Significance

• Another instance of mixing data and code

• not direct result of von Neumann architecture

• result of decades of mentally ignoring the 
difference between code and data
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SQL injection prevalence
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SQL injection prevalence
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Command injection

• The problem does not end with SQL injection

• any interpreted language that receives untrusted 
input is susceptible

• PHP, Perl, shell script, ...

32
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Taint tracking

• Modify runtime environment (e.g., Perl interpreter) 
to track use of data from untrusted sources

• alert/stop if such data is used in sensitive 
operations

• Variant for use with binaries

• use emulation or hardware support

• very slow

33
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SQL randomization

• Apply randomization to SQL templates

• Parameterize all keywords and operators
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select gender, avg(age) 

from cs101.students 

where dept = %d 

group by gender 

select123 gender, avg123 (age) 

from123 cs101.students 

where123 dept =123 %d 

group123 by123 gender 

Database Server

CGI
Scripts

DB

Middle!
ware

Result

Set

Result

Set

Standard

SQL

Randomized

SQL

Requests
HTTP

Client
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Proxy

Web Server

• Use de-randomizing proxy between client application and 
DBMS
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Cross-Site Scripting (XSS)

• Web-oriented class of vulnerabilities

• Bypasses browser security sandbox

• convinces browser (and user) that source of 
program is different (trusted?) site

• Programs are typically Javascript

• can be other active content

35
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How does it work?

• Some servers will mirror input from the URL in the returned 
page

• error pages, naive applications, etc.

• Browsers don’t know the provenance of data in a returned page

36

Web
Server

Browser
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How does it work?

• Some servers will mirror input from the URL in the returned 
page

• error pages, naive applications, etc.

• Browsers don’t know the provenance of data in a returned page
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Web
Server

Browser

GET /foo

URL /foo not found
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How does it work?

• Some servers will mirror input from the URL in the returned 
page

• error pages, naive applications, etc.

• Browsers don’t know the provenance of data in a returned page

36

Web
Server

Browser

GET /<b>foo</b>

URL /foo not found
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XSS in operation
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XSS in operation
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XSS in operation

37

Trusted
Web

Server

Untrusted
Web

Server

Browser

Get page

Redirect with
JS embedded in URL

Wednesday, July 23, 2008



XSS in operation
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Notes on XSS

• Injected JS appears to come from trusted website

• may fool the user through direct interaction

• e.g., fake login prompt

• can access cookies, issue direct requests against the trusted 
website

• particularly powerful if user does not log out
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XSS prevalence
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XSS prevalence
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XSS defenses

• No good known defenses

• Current state of practice

• fix server configurations

• fix applications

• do not allow JS or other active content(?) from 
unknown websites
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The future?

• Continuing mixing of code and data

• data serialization formats such as JSON

• “rich” document formats

• Office, PDF, etc.

• increasing focus on browser
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Conclusion

• Overview of a large and important class of software 
vulnerabilities

• widely exploited on a daily basis

• difficult to get it right

• programmer education is lacking

• Historical perspective on architectural choices and their 
impact on security 40+ years later

• How do we change things, given current course?
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