
Monitoring Violations & Threats of
Security & Dependability:
The SERENITY approach

Prof George Spanoudakis
School of Informatics
City University London

Email: G.Spanoudakis@soi.city.ac.uk

© George Spanoudakis

Lecture objectives

  To introduce the SERENITY approach to dynamic assembly and
configuration of S&D solutions and the need for monitoring security and
dependability properties at runtime

  To explain the SERENITY approach to monitoring and introduce the
SERENITY runtime monitoring framework, called EVEREST

  To provide examples of using EVEREST for runtime monitoring of S&D
properties

  To explain advanced features of EVEREST, namely the event diagnosis
and the threat detection and reaction mechanisms

© George Spanoudakis

Outline
Part I: Overview of the SERENITY framework

  Overview of SERENITY
  S&D patterns
  An example
  Need for monitoring
  The SERENITY infrastructure

Part II: The SERENITY monitoring infrastructure
  The SERENITY monitoring approach
  Monitoring lifecycle
  Monitoring infrastructure

Part III: Specification of monitorable S&D properties
  Specification of monitoring rules
  Examples of monitoring rules

Part IV: Advanced Capabilities
  Monitoring process
  Diagnosis
  Threat detection

Part V: Reaction
  Reaction to monitoring results

Conclusions, Main resources and references

© George Spanoudakis

Part I:
Overview of the SERENITY framework

© George Spanoudakis

Overview of SERENITY

Aims:
Dynamic
  selection
  (re-) configuration
  integration, and
  deployment
of components that can realise Security and Dependability
(S&D) solutions in applications, driven by S&D patterns

Motivation:
Applications
  Have continually changing S&D requirements
  Often need to operate in changing operational environments and contents
  Interact with dynamically assembled distributed components

Part I

© George Spanoudakis

S&D patterns

S&D pattern

Properties

Components &
Interactions

Monitoring Rules

Part I

  Provide an abstract specification of solutions that can be deployed
in a system to provide S&D properties and link this specification to
alternative concrete implementations

S&D
Implementation S&D

Implementation S&D
Implementation

© George Spanoudakis

S&D patterns

S&D pattern

Properties

Components &
Interactions

Monitoring Rules

Part I

  Provide an abstract specification of solutions that can be deployed
in a system to provide S&D properties and link this specification to
alternative concrete implementations

S&D
Implementation S&D

Implementation S&D
Implementation

Abstract specification of
•  component interfaces
•  interactions between
components (optional)

© George Spanoudakis

S&D patterns

S&D pattern

Properties

Components &
Interactions

Monitoring Rules

Part I

  Provide an abstract specification of solutions that can be deployed
in a system to provide S&D properties and link this specification to
alternative concrete implementations

S&D
Implementation S&D

Implementation S&D
Implementation

Abstract specification of
•  component interfaces
•  interactions between
components (optional)

Properties
that the
pattern
fulfils

© George Spanoudakis

S&D patterns

S&D pattern

Properties

Components &
Interactions

Monitoring Rules

Part I

  Provide an abstract specification of solutions that can be deployed
in a system to provide S&D properties and link this specification to
alternative concrete implementations

S&D
Implementation S&D

Implementation S&D
Implementation

Abstract specification of
•  component interfaces
•  interactions between
components (optional)

Properties
that the
pattern
fulfils

Conditions that need to
be monitored during the
operation of the solution
at runtime

© George Spanoudakis

S&D patterns

S&D pattern

Properties

Components &
Interactions

Monitoring Rules

Part I

  Provide an abstract specification of solutions that can be deployed
in a system to provide S&D properties and link this specification to
alternative concrete implementations

S&D
Implementation S&D

Implementation S&D
Implementation

Abstract specification of
•  component interfaces
•  interactions between
components (optional)

Properties
that the
pattern
fulfils

Conditions that need to
be monitored during the
operation of the solution
at runtime Concrete

implementations

© George Spanoudakis

An example: Location based access control

  Access control system providing access to enterprise resources (e.g. printers,
Internet access etc) from mobile user devices (PDAs, laptops) (based on [11])

  When a user requests access to a resource, the system may provide it
depending on:

  the credentials of the user,
  the ability to authenticate the device from which access is requested, and
  the location of the device

Part I

© George Spanoudakis

An example: Location based access control

  Access control system providing access to enterprise resources (e.g. printers,
Internet access etc) from mobile user devices (PDAs, laptops) (based on [11])

  When a user requests access to a resource, the system may provide it
depending on:

  the credentials of the user,
  the ability to authenticate the device from which access is requested, and
  the location of the device

Access to
•  Intranet, Internet
•  Room’s printer
•  Printers in common areas
No access to
•  printers in other rooms

Access to
•  Room’s printer
•  Internet
No access to
•  printers in other rooms
•  Intranet

User
Device

Own Office Room Office Room Meeting Room Office Room

Provided that both the
mobile device and its

user have been
authenticated

Part I

© George Spanoudakis

An example: device position calculation
Zone based Security assessment
pattern

  A daemon in mobile devices
sends signals to location server
(via location sensors)

  Based on the signals received
from different sensors, the
location server can calculate the
position of a device with some
accuracy measure

  The access control server
requests the location server to
calculate the position of devices

Location Server

Access Control Server

User
Device

Own Office Room Office Room Meeting Room Office Room

WiFi Infrastructure

LS LS LS LS LS

location
request

location
response

device
signal

device
signal

Part I

© George Spanoudakis

An example: Device location pattern (DLP)

Device Location Pattern

Properties

Components

Monitoring Rules

Location Server
 locationRequest(devID:ID,loc: Location, acc: Float)
 signal(devID: ID)

Location Server: has TPM-based identity

Part I

© George Spanoudakis

Need for monitoring

Runtime monitoring of S&D solutions is required in order to

  Check preconditions and invariants required for the correct operation of
the solutions

  Verify dynamically that an S&D solution operates according to its
specification in all circumstances (static verification and testing cannot
provide a full guarantee for this)

  Predict possible violations of conditions and take (if possible) pre-
emptive actions

Part I

© George Spanoudakis

DLP: some monitoring conditions

  Availability of the location server:
 Whenever the access control server makes a request for the location of
a device to the location server it must receive a response (or otherwise
no access decisions can be made or access will be continually over-
restricted)

  Liveness of signal daemons in mobile devices:
 Every device that is known to the control server should be sending
signals to the location server periodically and the maximum period of
not receiving a signal should not be less than m time units (or
otherwise it won’t be possible to calculate the position of the device)

  Accuracy of location information:
 The accuracy of the device location information that is provided by the
location server must always (on average) exceed a certain accuracy
threshold

Part I

© George Spanoudakis

Monitoring rules of DLP pattern

Device Location Pattern

Properties

Components

Monitoring Rules

Location Server
 locationRequest(devID:ID,loc: Location, acc: Float)
 signal(devID: ID)

<availability of location server>, notify SRF
<liveness of mobile device daemons>, notify application
<accuracy of location information>, notify SRF

Location Server: has TPM-based identity

Part I

© George Spanoudakis

SERENITY Infrastructure

EVEREST
  Is available as a service to

the SERENITY runtime
framework (SRF)

  Receives specifications of
the rules to be monitored
and runtime events from
the SRF

  Performs the checking
  Can be polled for

monitoring results

SERENITY Runtime
Framework

  Activates patterns and
their executable
implementations

  Sends monitoring rules to
EVEREST

  Receives events from
captors of pattern
implementations and
forwards them to EVEREST

  Polls EVEREST for results
and executes actions
according to them

Part I

© George Spanoudakis

Part II:
The SERENITY monitoring infrastructure

© George Spanoudakis

Runtime monitoring

 3 alternatives
  The application performs the checks itself

  The checks are performed by an external entity

  The checks are performed by both the application and an
external entity

Part II

© George Spanoudakis

Runtime monitoring

 3 alternatives
  The application performs the checks itself

  The checks are performed by an external entity

  The checks are performed by both the application and an
external entity

Requires extra programming effort, expensive to change when
the system is in operation and needs to deploy a new S&D solution,
some checks need to be applied on the deployed S&D solution which the
application has no control of

Part II

© George Spanoudakis

Runtime monitoring

 3 alternatives
  The application performs the checks itself

  The checks are performed by an external entity

  The checks are performed by both the application and an
external entity

Requires extra programming effort, expensive to change when
the system is in operation and needs to deploy a new S&D solution,
some checks need to be applied on the deployed S&D solution which the
application has no control of

Requires monitoring specifications, more flexible when
operational environments change and S&D solutions change,
can be applied to external collaborators,
less efficient than application based testing

Part II

© George Spanoudakis

Runtime monitoring

 3 alternatives
  The application performs the checks itself

  The checks are performed by an external entity

  The checks are performed by both the application and an
external entity

Requires extra programming effort, expensive to change when
the system is in operation and needs to deploy a new S&D solution,
some checks need to be applied on the deployed S&D solution which the
application has no control of

Requires monitoring specifications, more flexible when
operational environments change and S&D solutions change,
can be applied to external collaborators,
less efficient than application based testing

Increased fault tolerance (two independent implementations of
the same check), more expensive and less flexible option, necessary
in certain circumstances

Part II

© George Spanoudakis

Runtime monitoring: The SERENITY approach

 3 alternatives
  The application performs the checks itself

  The checks are performed by an external entity

  The checks are performed by both the application and an
external entity

Requires extra programming effort, expensive to change when
the system is in operation and needs to deploy a new S&D solution,
some checks need to be applied on the deployed S&D solution which the
application has no control of

Requires monitoring specifications, more flexible when
operational environments change and S&D solutions change,
can be applied to external collaborators,
less efficient than application based testing

Increased fault tolerance (two independent implementations of
the same check), more expensive and less flexible option, necessary
in certain circumstances

Part II

© George Spanoudakis

Monitoring life cycle
Part II

© George Spanoudakis

Monitoring life cycle

Development of S&D solutions

Part II

© George Spanoudakis

Monitoring life cycle

Development of S&D solutions

  Specify the
conditions that need
to be monitored at
runtime and the
actions that need to
be taken when the
conditions are
violated within S&D
patterns

S&D pattern

Properties

Components &
Interactions

Monitoring Rules
[Rule, [Actions]*]*

Part II

© George Spanoudakis

Monitoring life cycle

Development of S&D solutions

  Specify the
conditions that need
to be monitored at
runtime and the
actions that need to
be taken when the
conditions are
violated within S&D
patterns

  Provide
implementations of
patterns (aka S&D
solutions)
incorporating captors
that can provide the
events required to
monitor the
conditions of the
pattern

S&D
implementation

Event captors

S&D
implementation

Event captors

S&D
implementation

Event captors

S&D pattern

Properties

Components &
Interactions

Monitoring Rules
[Rule, [Actions]*]*

Part II

© George Spanoudakis

Monitoring life cycle

Development of S&D solutions

  Specify the
conditions that need
to be monitored at
runtime and the
actions that need to
be taken when the
conditions are
violated within S&D
patterns

  Provide
implementations of
patterns (aka S&D
solutions)
incorporating captors
that can provide the
events required to
monitor the
conditions of the
pattern

S&D
implementation

Event captors

S&D
implementation

Event captors

S&D
implementation

Event captors

S&D pattern

Properties

Components &
Interactions

Monitoring Rules
[Rule, [Actions]*]*

At runtime

When an S&D pattern
is selected:
  Start the process of

checking its monitoring
rules

  Activate the relevant
S&D implementation
and its captors

Part II

© George Spanoudakis

Monitoring life cycle

Development of S&D solutions

  Specify the
conditions that need
to be monitored at
runtime and the
actions that need to
be taken when the
conditions are
violated within S&D
patterns

  Provide
implementations of
patterns (aka S&D
solutions)
incorporating captors
that can provide the
events required to
monitor the
conditions of the
pattern

S&D
implementation

Event captors

S&D
implementation

Event captors

S&D
implementation

Event captors

S&D pattern

Properties

Components &
Interactions

Monitoring Rules
[Rule, [Actions]*]*

At runtime

When an S&D pattern
is selected:
  Start the process of

checking its monitoring
rules

  Activate the relevant
S&D implementation
and its captors

When a monitoring
rule is violated:
  Execute the action(s)

specified for it (if any)

Part II

© George Spanoudakis

Monitoring life cycle

Development of S&D solutions

  Specify the
conditions that need
to be monitored at
runtime and the
actions that need to
be taken when the
conditions are
violated within S&D
patterns

  Provide
implementations of
patterns (aka S&D
solutions)
incorporating captors
that can provide the
events required to
monitor the
conditions of the
pattern

S&D
implementation

Event captors

S&D
implementation

Event captors

S&D
implementation

Event captors

S&D pattern

Properties

Components &
Interactions

Monitoring Rules
[Rule, [Actions]*]*

At runtime

When an S&D pattern
is selected:
  Start the process of

checking its monitoring
rules

  Activate the relevant
S&D implementation
and its captors

When a monitoring
rule is violated:
  Execute the action(s)

specified for it (if any)
When an S&D pattern
is deactivated:
  Stop the process of

checking its monitoring
rules

  Deactivate the relevant
S&D implementation
and its captors

Part II

© George Spanoudakis

EVEnt REaSoning Toolkit (EVEREST)

Threat Detection
Tool

Diagnosis Tool

Event
Collector

EVEREST

Monitor

Event Captor
(System)

Event Captor
(System

Component)

Manager

Control Component

Event DB

Violation
DB

Event notification
Event/Violation retrieval

Event write
Diagnosis request

e

e

e

e

Part II

© George Spanoudakis

EVEnt REaSoning Toolkit (EVEREST)

  Captures events through
event captors associated
with systems and their
components

Threat Detection
Tool

Diagnosis Tool

Event
Collector

EVEREST

Monitor

Event Captor
(System)

Event Captor
(System

Component)

Manager

Control Component

Event DB

Violation
DB

Event notification
Event/Violation retrieval

Event write
Diagnosis request

e

e

e

e

Part II

© George Spanoudakis

EVEnt REaSoning Toolkit (EVEREST)

  Captures events through
event captors associated
with systems and their
components

  Checks whether captured
events (and events deduced
from them) satisfy specific
S&D properties expressed
as monitoring rules (core
monitor)

Threat Detection
Tool

Diagnosis Tool

Event
Collector

EVEREST

Monitor

Event Captor
(System)

Event Captor
(System

Component)

Manager

Control Component

Event DB

Violation
DB

Event notification
Event/Violation retrieval

Event write
Diagnosis request

e

e

e

e

Part II

© George Spanoudakis

EVEnt REaSoning Toolkit (EVEREST)
  Captures events through

event captors associated
with systems and their
components

  Checks whether captured
events (and events deduced
from them) satisfy specific
S&D properties expressed as
monitoring rules (core
monitor)

  Assesses event
genuineness by attempting
to derive explanations of
captured events (diagnosis
tool)

Threat Detection
Tool

Diagnosis Tool

Event
Collector

EVEREST

Monitor

Event Captor
(System)

Event Captor
(System

Component)

Manager

Control Component

Event DB

Violation
DB

Event notification
Event/Violation retrieval

Event write
Diagnosis request

e

e

e

e

Part II

© George Spanoudakis

EVEnt REaSoning Toolkit (EVEREST)

  Captures events through
event captors associated
with systems and their
components

  Checks whether captured
events (and events deduced
from them) satisfy specific
S&D properties expressed as
monitoring rules (core
monitor)

  Assesses event genuineness
by attempting to derive
explanations of captured
events (diagnosis tool)

  Predicts potential
violations of monitoring
rules based on historical
data (threat detection
tool – TDT)

Threat Detection
Tool

Diagnosis Tool

Event
Collector

EVEREST

Monitor

Event Captor
(System)

Event Captor
(System

Component)

Manager

Control Component

Event DB

Violation
DB

Event notification
Event/Violation retrieval

Event write
Diagnosis request

e

e

e

e

Part II

© George Spanoudakis

Part III:
Specification of monitorable S&D properties

© George Spanoudakis

Specification of monitoring rules (1)

  Monitoring rules: express the properties/requirements that need to be
monitored

  General form
Bt1 ⇒ Ht2 (if Bt1 is true then Ht2 must be true)

  Bt1:
  rule’s body (a conjunction of conditions, e.g. occurrences of events,

conditions regarding the state of the system)
  It is typically expressed as a conjunction of Happens, HoldsAt,

relational or time predicates
  Ht2:

  rule’s head (a number of consequences)
  It is typically expressed as a conjunction of Happens, HoldsAt,

relational or time predicates

Part III

© George Spanoudakis

Specification of monitoring rules (2)

  Rules and assumptions are specified in Event Calculus － a first
order temporal logic language － in terms of
  Events: things that happen within a system of instantaneous

duration (e.g. receipt of component messages, execution of internal
or system operations)

  Fluents: conditions about the state of a system
 relation(obj1, …, objN)

  Predefined predicates:
  Happens(e, t, ℜ(t1,t2)) － occurrence of an event e of instantaneous

duration at some time t within the time range ℜ(t1,t2)
  Initiates(e,f,t) － fluent f starts to hold after the event e at time t.
  Terminates(e,f,t) － fluent f ceases to hold after the event e occurs at

time t
  HoldsAt(f,t) － fluent f holds at time t.
  Relational predicates: x REL y (e.g. EqualTo, NotEqualTo, …)
  Time predicates: t1 TREL t2 (e.g. TEqualTo, TLessThan …)

Part III

© George Spanoudakis

Specification of monitoring rules (3)

Events: General form
e(_id, _senderRole, _senderID, _receiverRole, _receiverID, _status,

_signature _sourceRole, _sourceID))
  _signature: the type of a message sent by the component/system
  _status: indicates whether the message is incoming or outgoing
  _senderRole: the role of the component that sends the message
  _senderID: the id of the component that sends the message
  _receiverRole: the role of the component that receives the message
  _receiverID: the id of the component that receives the message
  _sourceRole: the role of the component at which the message is captured
  _sourceID: the id of the component at which the message is captured

Events typically correspond to operations defined in the interfaces of the components
of the S&D pattern

_Sender _Receiver _signature (message/call)

event

_source

Part III

© George Spanoudakis

Specification of monitoring rules (4)

  Other features

  Calls to built-in functions implementing complex
computations (e.g. statistical functions)

 Happens(e(…,REQ, o(),…), t1, R(t1, t1)) ∧

 Happens(e(…, RES, o(),…), t2, R(t1, t2)) ∧
 HoldsAt(o_response_times(RT[]), t2) ⇒ m:append(RT[], t2 － t1), t2)
 HoldsAt(o_response_times(RT[]), t1) ⇒ m:avg(RT[]) < k

Part III

© George Spanoudakis

Examples of monitoring rules:
Rule for location server availability

 Condition: when the access control server sends a location request to the
location server it should receive a response from it within 3 seconds

_Sender _Receiver locationRequest(devID1,_loc,_prob)

Access Control Server Location Server
locationRequest(devID1, loc1, 0.98)

Part III

© George Spanoudakis

Examples of monitoring rules:
Rule for location server availability

 Condition: when the access control server sends a location request to the
location server it should receive a response from it within 3 seconds

Rule 1
Happens(e(_eID1, _controlServerRole, _controlServerID, _locationServerRole,

_locationServerID, REQ, locationRequest(_dev,_loc,_prob),
_controlServerRole, _controlServerID), t1, R(t1, t1))

⇒
Happens(e(_eID2, _locationServerRole, _locationServerID, _controlServerRole,

_controlServerID, RES, locationRequest(_dev, _loc, _prob),
_controlServerRole, _controlServerID), t2, R(t1+1, t1+3000))

_Sender _Receiver locationRequest(devID1,_loc,_prob)

Access Control Server Location Server
locationRequest(devID1, loc1, 0.98)

Part III

© George Spanoudakis

Examples of monitoring rules:
Rules for liveness of device daemons

 Condition: Every mobile device that is known to the control server
should be sending signals to the location server periodically and the
maximum period of not receiving a signal should not be less than m
time units

 Can be specified by 2 rules:
  A rule for checking when the first signal from a mobile device should

be received
  A rule for checking the continuous receipt of signals

Part III

signal (_devID)

Mobile Device Location Server Access Control Server

locationRequest(_devID, _loc, _prob)

© George Spanoudakis

Examples of monitoring rules:
Rules for liveness of device daemons

signal (_devID)

Mobile Device Location Server

Rule 2:
Happens(e(_eID1, _cServerRole, _cServerID, _lServerRole, _lServerID, REQ,

locationRequest(_devID,_loc,_prob), _lServerRole, _lServerID), t1, R(t1,t1)) ∧
¬∃t2. Happens(e(_eID2, _cServerRole, _cServerID, _lServerRole, _lServerID, REQ,

locationRequest(_devID,_loc1,_prob1), _lServerRole, _lServerID), t2, R(0,t1-1)) ⇒
∃t3. Happens(e(_eID3, _deviceRole, _devID, _lServerRole, _lServerID, RES, signal(_devID),

_lServerRole, _lServerID), t3, R(t1-m,t1))
Rule 3:
Happens(e(_eID1, _deviceRole, _devID, _lServerRole, _lServerID, REQ, signal(_devID),

_lServerRole, _lServerID), t1, R(t1,t1)) ⇒
Happens(e(_eID2, _deviceRole, _devID, _lServerRole, _lServerID, REQ, signal(_devID),

_lServerRole, _lServerID), t1, R(t1,t1+m)) ∧ _eID1 ≠ _eID2

Access Control Server

locationRequest(_devID, _loc, _prob)

Part III

© George Spanoudakis

Examples of monitoring rules:
Rule for accuracy of location information

 Condition: The accuracy of the device location information that is
provided by the location server must always exceed a certain accuracy
threshold

_Receiver _Sender

Access Control Server Location Server

locationRequest(devID1, loc1, 0.98)

Part III

© George Spanoudakis

Examples of monitoring rules:
Rule for accuracy of location information

 Condition: The accuracy of the device location information that is
provided by the location server must always exceed a certain accuracy
threshold

Rule 4
Happens(e(_eID1, _locationServerRole, _locationServerID, _controlServerRole,

_controlServerID, RES, locationRequest(_dev,_loc,_prob), _controlServerRole,
_controlServerID), t1, R(t1, t1))

⇒ _prob ≥ AT

Part III

_Receiver _Sender

Access Control Server Location Server

locationRequest(devID1, loc1, 0.98)

© George Spanoudakis

Assumptions

  Used to deduce information about the state of the system and/or the
occurrence of events

  Two types:
  Monitoring assumptions: express how the state of a “system” that is being

monitored is affected by events
  Diagnostic assumptions: express expected patterns of correlated events

(e.g. sequences of operation calls)

  Have the same general form with rules:
Bt1 ⇒ Ht2

  Bt1: assumption’s body (a conjunction of Happens, HoldsAt, relational or
time predicates

  Ht2: assumption’s head
  In monitoring assumptions: a conjunction of fluent initiation and/or

termination predicates (Initiates, Terminates predicates)
  In diagnostic assumptions: a conjunction of Happens predicates

Part III

© George Spanoudakis

Assumptions: example
Part III

_recID _senID

Access Control Server Device

requestAccess(_devID, _resID)

 Condition: A device requesting access to a resource must have been
authenticated

© George Spanoudakis

Assumptions: example
Part III

_recID _senID

Access Control Server Device

requestAccess(_devID, _resID)

 Condition: A device requesting access to a resource must have been
authenticated

Rule 5
 Happens(e((_eID1,,_sndRole,_sndID,

 _recRole, _recID, REQ, requestAccess(_devID, _resID), _recRole,_recID), t1,
R(t1, t1)) ⇒
 HoldsAt(AUTHENTICATED(_devID), t1, R(t1, t1))

Assumption A1 (monitoring assumption)
 Happens(e(_eID2,_recRole,_recID,

 _senRole, _senID, RES, connect(_devID, _res)
 _recRole,_recID), t1, R(t1, t1)) ∧ _res = True ⇒

 Initiates(e(_eID2, …), AUTHENTICATED(_devID), t1, R(t1, t1))

© George Spanoudakis

Monitoring Process

  It is based on a generic event calculus reasoning engine (see
[1,6,7,8])

  Rule checking using
  Runtime events
  Fluents established by assumptions (deductive reasoning)

  Checks cover both past and bounded future EC formulas
  Past formulas:

 Happens(e1, t1, R(t1, t1)) ⇒ Happens(e2, t2, R(0, t1))
  Bounded Future formulas:

 Happens(e1, t1, R(t1, t1)) ⇒ Happens(e2, t2, R(t1, t1+K))

  Ability to analyse
  events captured from distributed sources with different clocks
  events arriving at the monitor not in the same order as the order of

their capture

Part III

© George Spanoudakis

Part IV:
Advanced Capabilities (Diagnosis and Prediction)

© George Spanoudakis

Monitoring process: diagnostic capabilities
  Given a violation of an S&D monitoring rule

R: E1, E2, E3, …, En ⇒ En+1
Calculate beliefs in the genuineness of the events E1,E2, …, ¬En+1

which are involved in the violation since events might be the result of
an attack or fault

  Overall Approach (see [5] and [7])
  The genuineness of an event depends on the ability to find a valid

explanation for it
  An event explanation is a logical combination of other events and states of the

system which would have the event as a consequence
  An event explanation is considered to be valid if it has as consequences other

events which have also been observed and are genuine
  Possible event explanations are generated by abductive reasoning using

the monitoring specifications of the active patterns of the system that is
being monitored

  Event genuineness is assessed by beliefs computed according the
Dempster-Shafer theory of evidence

Part IV

© George Spanoudakis

Diagnosis: Assessing Event Genuineness

Belief in event genuineness:
 Assumption:

 An event is genuine if there is at least one valid explanation for it, i.e., an
explanation whose further consequences (if any) are genuine

 Process:
  Generate explanations using abductive reasoning and a system behaviour

model (expressed as assumptions in EC-Assertion)
  Check explanation validity by checking if the expected consequences of an

explanation are genuine events themselves
  Limit analysis to a period “around” the event (diagnosis window)

Belief functions:
m(Ei) = mo(Ei) × {ΣJ⊆EXP(Ei)and J≠∅(－1)|J|+1{Π x∈J mv (x,Ei)} If EXP(Ei)≠∅

 = mo(Ei) × β1 Otherwise
mv(x,Ei) = ΣS⊆Cons(x/Ei) and S≠∅(－1)|S|+1{Π e ∈S m(e,Ei)} If Cons(x/Ei) ≠∅
 = β2 Otherwise

Part IV

© George Spanoudakis

Diagnosis: Example

  Condition: no user should be allowed to login onto different parts of the WiFi
network simultaneously (to reduce scope for masquerading attacks):

_C1
(sender)

_C2
(receiver)

login(_U,_devID)

Mobile Device
Network 1 Controller

logout(_U, _devID)

Network 2 Controller

_C2
(receiver) login(_U,_devID)

Rule-5:
∀ _U: User; _C1: Client; _C2, _C3: NetworkController; t1, t2:Time
Happens(e(_E1, _C1Role, _C1, _C2Role, _C2,REQ, login(_U,_C1), _C2Role, _C2),
t1,ℜ(t1,t1)) ∧
Happens(e(_E2, _C1Role , _C1, _C3Role, _C3,REQ, login(_U,_C1),_C3Role,_C3),
t2,ℜ(t1,t2)) ∧ _C2 ≠_C3
⇒
∃ t3: Time Happens(e(_E3,_C1,_C2,REQ, logout(_U,_C1), _C2),t3,ℜ(t1+1,t2-1))

Part IV

© George Spanoudakis

Diagnosis: Example

signal(_dId)

InPremises
(_dId, _NS)

accessTo
(_dId,
_resId)

login
(_U,_dId, _NS)

t2∈[t1-3000,t1]

t1∈[t1,t1]

t1∈[t1,t1]

t2∈[t1-3000,t1]

t2∈[t1, t1+60000]

t2∈[t1-1000,t1]
t1∈[t1,t1]

t1∈[t1,t1]

Observable

Observable

Observable

Abducible

Part IV

© George Spanoudakis

Diagnosis: Example

signal(_dId)

InPremises
(_dId, _NS)

accessTo
(_dId,
_resId)

login
(_U,_dId, _NS)

t2∈[t1-3000,t1]

t1∈[t1,t1]

t1∈[t1,t1]

t2∈[t1-3000,t1]

t2∈[t1, t1+60000]

t2∈[t1-1000,t1]
t1∈[t1,t1]

t1∈[t1,t1]

Observable

Observable

Observable

Abducible

Part IV

  login(_, 101, n1) @ t=10050 ⇒A InPremises
(101,n1) @ t∈[9050,10050)

  InPremises(101,n1) @ t∈[9050,10050) ⇒
 signal(101) @ t∈[6050,10050)

  InPremises(101,n1) @ t∈[9050,10050) ⇒
 accessTo(101, _) @ t∈[9050,69050)

© George Spanoudakis

Diagnosis: Example

signal(_dId)

InPremises
(_dId, _NS)

accessTo
(_dId,
_resId)

login
(_U,_dId, _NS)

t2∈[t1-3000,t1]

t1∈[t1,t1]

t1∈[t1,t1]

t2∈[t1-3000,t1]

t2∈[t1, t1+60000]

t2∈[t1-1000,t1]
t1∈[t1,t1]

t1∈[t1,t1]

Observable

Observable

Observable

Abducible

Part IV

  login(_, 101, n1) @ t=10050 ⇒A InPremises
(101,n1) @ t∈[9050,10050)

  InPremises(101,n1) @ t∈[9050,10050) ⇒
 signal(101) @ t∈[6050,10050)

  InPremises(101,n1) @ t∈[9050,10050) ⇒
 accessTo(101, _) @ t∈[9050,69050)

  signal(101)@ t=8050
 m(login(…)) = β1 = 0.2
  signal(101)@ t=8050

 accessTo(101, _) @ t = 9801
 m(login(…)) = β1 + β1 - β1 × β1 = 0.36

  Explanation with no consequences
 m(login(…)) = β2 = 0.1

© George Spanoudakis

Monitoring process:
threat detection capabilities

 Detection of potential violations of S&D monitoring rules
R: E1, E2, E3, …, En ⇒ En+1

Calculate belief that R will be violated given the observation of a
subset of E1,E2, …, En+1

  Events might
  Not be observed in the order they are expected by R
  Be the result of an attack or fault (and therefore a belief in their

genuineness needs to be estimated; see diagnosis)

  Approach (see [1])
  Use DS beliefs to measure the likelihood of events genuineness and the

likelihood of conditional event occurrence
  Negate the rule to get the exact pattern of events that violates it
  Construct a belief network indicating how beliefs in the violation of the

rule can be updated as partial evidence about events in the pattern
emerges

Part IV

© George Spanoudakis

Threat detection: Belief graphs

  Negate the rule
 Rule-5 attack signature:
 ∀ _U: User; _C1: Client; _C2, _C3: NetworkController; t1, t2:Time
 Happens(e(_E1,_C1Role,_C1,_C2Role,_C2,REQ, login(_U,_C1,_C2),_C2Role, _C2),t1,ℜ
(t1,t1)) ∧
 Happens(e(_E2,_C1Role,_C1,_C3Role,_C3,REQ, login(_U,_C1,_C3),_C3Role, _C3),t2,ℜ
(t1,t2)) ∧ _C2 ≠_C3
 ⇒ ∀t3:Time ¬Happens(e(_E3,_C1Role,_C1,_C2Role, _C2,REQ, logout(_U,_C1,_C2),
_C2Role, _C2),t3,ℜ(t1+1,t2-1))

  Belief graph
  Nodes represent events in rule

 attack signatures
  “Start node”: starting point for

 evidence collection
  Edges: temporal constraints over events +

 belief functions

Part IV

© George Spanoudakis

Threat detection: Belief graphs

  Negate the rule
 Rule-5 attack signature:
 ∀ _U: User; _C1: Client; _C2, _C3: NetworkController; t1, t2:Time
 Happens(e(_E1,_C1Role,_C1,_C2Role,_C2,REQ, login(_U,_C1,_C2),_C2Role, _C2),t1,ℜ
(t1,t1)) ∧
 Happens(e(_E2,_C1Role,_C1,_C3Role,_C3,REQ, login(_U,_C1,_C3),_C3Role, _C3),t2,ℜ
(t1,t2)) ∧ _C2 ≠_C3
 ⇒ ∀t3:Time ¬Happens(e(_E3,_C1Role,_C1,_C2Role, _C2,REQ, logout(_U,_C1,_C2),
_C2Role, _C2),t3,ℜ(t1+1,t2-1))

  Belief graph
  Nodes represent events in rule

 attack signatures
  “Start node”: starting point for

 evidence collection
  Edges: temporal constraints over events +

 belief functions

Start

E1

E2
¬E3

m2|1

m1|2 m3|2

m1 m2

m3|1

Part IV

© George Spanoudakis

Threat Detection: Belief functions

Conditional belief in event occurrences:
 Σ e ∈ Elog(Ej) m(e) × {ΣJ⊆Elog(Ei|e)and J≠∅(－1)|J|+1{Π x∈J m(x)}
mi|j(ei) =

 Σ e ∈ Elog(Ej) m(e)

 Σ ej ∈ Elog(Ej) m(e) × {Σ ei ∈ Elog(Ei|ej) m(¬ei)}
mi|j(¬ei) =

 Σ ej ∈ Elog(Ej) m(e)

  Elog(Ej): Sample of N (sample size) randomly selected Ej events within
the given sampling period

  Elog(Ei|e): set of the events of type Ei in the event log that have
occurred within the time period determined by e and up to the time
point when mi|j is calculated

  m(e)/m(x): basic belief in genuineness of e/x

Part IV

© George Spanoudakis

Threat Detection: Example

Start

E1

E2
¬E3

m2|1

m1|2 m3|2

m1 m2

m3|1

Part IV

© George Spanoudakis

Threat Detection: Example

Start

E1

E2
¬E3

m2|1

m1|2 m3|2

m1 m2

m3|1

  login(u1, 101, n1) @
t=10050 occurs

Part IV

© George Spanoudakis

Threat Detection: Example

Start

E1

E2
¬E3

m2|1

m1|2 m3|2

m1 m2

m3|1

  login(u1, 101, n1) @
t=10050 occurs

m1(E1) = k1= 0.8
m1(¬E1) = k1’ = 0.1
m2|1 (E2|E1)= k21 =0.6
m2|1 (¬ E2|E1)= k21’ = 0.4
m3|1 (E3|E1) = k31 = 0.2
m3|1 (¬ E3|E1)= k31’ =0.6

Part IV

© George Spanoudakis

Threat Detection: Example

Start

E1

E2
¬E3

m2|1

m1|2 m3|2

m1 m2

m3|1

  login(u1, 101, n1) @
t=10050 occurs

m1(E1) = k1= 0.8
m1(¬E1) = k1’ = 0.1
m2|1 (E2|E1)= k21 =0.6
m2|1 (¬ E2|E1)= k21’ = 0.4
m3|1 (E3|E1) = k31 = 0.2
m3|1 (¬ E3|E1)= k31’ =0.6

Threat belief calculation:

€

(m1 ⊕m2|1 ⊕m3|1(E1 ∧E2 ∧¬E3)) =

k31
©k21k1 +k31

©k1(1−k21 −k21
©) +k31

©k21(1 −k1 −k1
©)

1− (k31
©k21

© (1 −k1
©) +k31

©k21
© (1−k1

©)
=

0.6* 0.6* 0.8 + 0.6* 0.8* 0 + 0.6* 0.6*1
1* (0.2* 0.4* 0.9 + 0.6* 0.4* 0.9)

= 0.45

Part IV

© George Spanoudakis

Threat Detection: Evaluation

Evaluated properties
  Threat reaction time: TRT = Tmon - TTDT

  Precision: PR = TTSBR /(TTSBR + FTSBR)
  TTSBR : number of threat signals with a belief in a given range (BR) that ended up to

eventual violations of the relevant rule detected by the EVEREST monitor (true
signals)

  FTSBR: number of the threat signals with belief in a given range (BR) that did not
correspond to an eventual violation of the relevant rule

  Analysis of effect of
  Diagnosis window (DW)
  Sample size (SS)

Set up
  Simulation of workflow of LBACS system
  8 sets of 2,000 events (different variances in inter-event arrival times)

Part IV

© George Spanoudakis

Threat Detection: TRT

  Average threat reaction time: 9.3 to 14.1 seconds
  Sufficient time for taking some types of pre-emptive action (e.g.

deactivation of system components)

TRT (secs)

Part IV

© George Spanoudakis

Threat detection: precision

  Varied from 78% to 83%
  Diagnosis window (DW) and sample size (SS) increments caused marginal

increase in it (≤ 1.8 %) – see Exp1/Exp2, Exp3/Exp4, Exp5/Exp6, Exp7/Exp8
(caused maximum increase)

Part IV

© George Spanoudakis

Part V:
Reaction

© George Spanoudakis

Reaction to monitoring results

  In some cases, following the detection of a problem whilst
monitoring an S&D solution it might be possible to take
some action that
  Rectifies the problem, and/or

  Prevents further harm

  Examples: In LBACS:

  If the location server becomes unavailable, it might be necessary to
deactivate the operation of the system unless the problem is
repaired (action 1)

  If more than X location sensors become unavailable the system may
switch to WiFi only access control solution and access to certain
resources may be deactivated (action 2)

  Some actions are possible to automate …

Part V

© George Spanoudakis

Our approach in SERENITY

  Reactions are realised by actions taken at runtime by the SERENITY
Runtime Framework following the receipt of monitoring results from
EVEREST

  Specification of actions:

Rule specification = EC formula + [(action1, cnd1), …, (actionN, cndN)]

  Semantics:
  Each of the actions (actioni) is executed only if the condition

associated with it is also satisfied (cndi)
  The actions are executed in the exact order that they appear in the

rule specification

  The SRF supports only predefined types of actions
  Complex conditions may be associated with actions

Part V

© George Spanoudakis

Predefined action types

  Action types

  DeactivatePattern()

  RestartPattern()

  NotifySRF(String external_SRF_ID, String Message)

  NotifyApplication(String message)

  StopMonitoringRules(String ruleID1, String

ruleID2,… String ruleIDn)

  StartMonitoringRules(String ruleID1, String

ruleID2,… String ruleIDn)

  Log()

Part V

© George Spanoudakis

Monitoring results

  Basic monitoring
Rule: E1, E2, E3, …, En ⇒ En+1

  detect whether E1, E2, E3, …, En, ¬ En+1 has happened
  RESULTS: Instances of the events E1, E2, E3, …, En, ¬ En+1 that have

caused the violation are returned by EVEREST

  Monitoring with enabled diagnosis
Rule: E1, E2, E3, …, En ⇒ En+1

  detect whether E1, E2, E3, …, En, ¬ En+1 are genuine
  RESULTS: As in core monitoring + a belief range [Bel(Ei), 1-Bel(¬ Ei)]

indicating the belief in the genuineness of each of the events Ei

  Treat detection
Rule: E1, E2, E3, …, En ⇒ En+1

  Given a subset of seen events OE ⊂ {E1, E2, E3, …, En} calculate the
probability that {E1, E2, E3, …, En} - OE ∪ {¬En+1} will occur

  RESULTS: instances of the seen set of events OE, belief ranges for their
genuineness + a belief range for a potential violation of the rule

Part V

© George Spanoudakis

Monitoring results
  Reported to SRF in XML

Part V

© George Spanoudakis

Monitoring results
  Reported to SRF in XML The basic schema is the same as the

schema for rule specification BUT
events and variables are instantiated

Part V

© George Spanoudakis

Monitoring results
  Reported to SRF in XML The basic schema is the same as the

schema for rule specification BUT
events and variables are instantiated

Threat belief range for the rule

Part V

© George Spanoudakis

Monitoring results
  At the level of

 individual conditions

Part V

© George Spanoudakis

Monitoring results
  At the level of

 individual conditions

Attribute indicating whether the event
unified with the predicate is genuine;
used only in diagnosis results

Part V

© George Spanoudakis

Monitoring results
  At the level of

 individual conditions

Attribute indicating whether the event
unified with the predicate is genuine;
used only in diagnosis results

Attributes representing the predicate
belief range; used both for diagnosis
and threat detection results

Part V

© George Spanoudakis

Action specification schema

  Attachment of actions to rules

Part V

© George Spanoudakis

Action specification schema

  Attachment of actions to rules zero or more actions

Part V

© George Spanoudakis

Action specification schema

  Attachment of actions to rules zero or more actions

Operation signature:
name + zero or more
variables

Part V

© George Spanoudakis

Action specification schema

  Attachment of actions to rules zero or more actions

Operation signature:
name + zero or more
variables

Guard conditions

Part V

© George Spanoudakis

Action specification schema

  Specification of guard conditions for actions

Part V

© George Spanoudakis

Action specification schema

  Specification of guard conditions for actions

As atomic or complex
logical conditions (using
AND, OR operators)

Part V

© George Spanoudakis

Action specification schema

  Specification of guard conditions for actions

Part V

© George Spanoudakis

Action specification schema

  Specification of guard conditions for actions

Can extract content from
XML documents
(monitoring results etc)

Part V

© George Spanoudakis

Actions: example 1
Rule-5: ∀ _U: User; _C1: Client; _C2, _C3: NetworkController; t1, t2:Time

 Happens(e(_E1, _C1R, _C1, _C2R, _C2,REQ, login(_U,_C1), _C2R, _C2), t1,ℜ(t1,t1)) ∧
 Happens(e(_E2, _C1R , _C1, _C3R, _C3,REQ, login(_U,_C1),_C3R, _C3), t2,ℜ(t1,t2)) ∧ _C2 ≠_C3
 ⇒ ∃ t3: Time Happens(e(_E3,_C1,_C2,REQ, logout(_U,_C1), _C2),t3,ℜ(t1+1,t2−1))

Part V

© George Spanoudakis

Actions: example 1
Rule-5: ∀ _U: User; _C1: Client; _C2, _C3: NetworkController; t1, t2:Time

 Happens(e(_E1, _C1R, _C1, _C2R, _C2,REQ, login(_U,_C1), _C2R, _C2), t1,ℜ(t1,t1)) ∧
 Happens(e(_E2, _C1R , _C1, _C3R, _C3,REQ, login(_U,_C1),_C3R, _C3), t2,ℜ(t1,t2)) ∧ _C2 ≠_C3
 ⇒ ∃ t3: Time Happens(e(_E3,_C1,_C2,REQ, logout(_U,_C1), _C2),t3,ℜ(t1+1,t2−1))

<action>
 <actionOperationName>NotifyApplication</actionOperationName>
 <variable persistent="0" forMatching="false“>

 <varName>userId</varName><varType>string</varType>
 <value>/resultsdesc/results/formula/body/predicate[0]/happens/ic_term/variable[0]
 /varName[text()=“_U"]/value</value>

 </variable>
 <guardCondition negated="false">
 <condition negated="false">
 <equalTo>
 <operand1><queryOperand>

 <document><name>R5_Result</name><type>MonitoringResults</type></document>
 <xpath>/resultsdesc/results/formula[@status] </xpath>
 </queryOperand></operand1>
 <operand2><constant><type>STRING</type>
 <value>Inconsistency_WRT_Recorded_Behaviour</value></constant>
 </operand2>

 </equalTo>
 </condition>
 </guardCondition>
</action> Action taken if Rule-5 is violated

Part V

© George Spanoudakis

Actions: example 2
Rule-5: ∀ _U: User; _C1: Client; _C2, _C3: NetworkController; t1, t2:Time

 Happens(e(_E1, _C1R, _C1, _C2R, _C2,REQ, login(_U,_C1), _C2R, _C2), t1,ℜ(t1,t1)) ∧
 Happens(e(_E2, _C1R , _C1, _C3R, _C3,REQ, login(_U,_C1),_C3R, _C3), t2,ℜ(t1,t2)) ∧ _C2 ≠_C3
 ⇒ ∃ t3: Time Happens(e(_E3,_C1,_C2,REQ, logout(_U,_C1), _C2),t3,ℜ(t1+1,t2−1))

Part V

© George Spanoudakis

Actions: example 2
Rule-5: ∀ _U: User; _C1: Client; _C2, _C3: NetworkController; t1, t2:Time

 Happens(e(_E1, _C1R, _C1, _C2R, _C2,REQ, login(_U,_C1), _C2R, _C2), t1,ℜ(t1,t1)) ∧
 Happens(e(_E2, _C1R , _C1, _C3R, _C3,REQ, login(_U,_C1),_C3R, _C3), t2,ℜ(t1,t2)) ∧ _C2 ≠_C3
 ⇒ ∃ t3: Time Happens(e(_E3,_C1,_C2,REQ, logout(_U,_C1), _C2),t3,ℜ(t1+1,t2−1))

<action>
 <actionOperationName>NotifySRF</actionOperationName>
 <variable persistent="0" forMatching="false“>

 <varName>instanceId</varName><varType>string</varType>
 <value>/resultsdesc/results/formula [@instanceId]</value>

 </variable>
 <guardCondition negated="false">
 <condition negated="false">
 <greaterThan>
 <operand1><queryOperand>

 <document><name>R5_Result</name><type>MonitoringResults</type></document>
 <xpath>/resultsdesc/results/formula[@minThreatLikelihood]</xpath>
 </queryOperand></operand1>
 <operand2><constant><type>DOUBLE</type> <value>0.6</value></constant>
 </operand2>

 </greaterThan>
 </condition>
 </guardCondition>
</action>

Action taken if the overall threat likelihood
of Rule-5 exceeds 0.6

Part V

© George Spanoudakis

Actions: example 3
Rule-5: ∀ _U: User; _C1: Client; _C2, _C3: NetworkController; t1, t2:Time

 Happens(e(_E1, _C1R, _C1, _C2R, _C2,REQ, login(_U,_C1), _C2R, _C2), t1,ℜ(t1,t1)) ∧
 Happens(e(_E2, _C1R , _C1, _C3R, _C3,REQ, login(_U,_C1),_C3R, _C3), t2,ℜ(t1,t2)) ∧ _C2 ≠_C3
 ⇒ ∃ t3: Time Happens(e(_E3,_C1,_C2,REQ, logout(_U,_C1), _C2),t3,ℜ(t1+1,t2−1))

Part V

© George Spanoudakis

Actions: example 3
Rule-5: ∀ _U: User; _C1: Client; _C2, _C3: NetworkController; t1, t2:Time

 Happens(e(_E1, _C1R, _C1, _C2R, _C2,REQ, login(_U,_C1), _C2R, _C2), t1,ℜ(t1,t1)) ∧
 Happens(e(_E2, _C1R , _C1, _C3R, _C3,REQ, login(_U,_C1),_C3R, _C3), t2,ℜ(t1,t2)) ∧ _C2 ≠_C3
 ⇒ ∃ t3: Time Happens(e(_E3,_C1,_C2,REQ, logout(_U,_C1), _C2),t3,ℜ(t1+1,t2−1))

<action>
 <actionOperationName>NotifyApplication</actionOperationName>
 <variable persistent="0" forMatching="false“>

 <varName>networkControllerId</varName><varType>string</varType>
 <value>/resultsdesc/results/formula/body/predicate[1]/happens/ic_term/
 variable[2]/varName[text()=“_C1"]/value</value>

 </variable>
 <guardCondition negated="false">
 <condition negated="false">
 <greaterThan>
 <operand1><queryOperand>

 <document><name>R5_Result</name><type>MonitoringResults</type></document>
 <xpath>/resultsdesc/results/formula/body/predicate[2][@minLikelihood]</xpath>
 </queryOperand></operand1>
 <operand2><constant><type>DOUBLE</type> <value>0.6</value></constant>
 </operand2>

 </greaterThan>
 </condition>
 </guardCondition>
</action>

Action taken if the belief in the
genuineness of second login is less than 0.4

Part V

© George Spanoudakis

Conclusions

  SERENITY provides an infrastructure for selecting and deploying S&D
solutions at runtime based on S&D patterns

  It also provides a monitoring framework for runtime checks of
conditions related to the correct operation of S&D patterns

  These conditions are specified as monitoring rules in Event Calculus

  Monitoring rules are specified as part of S&D patterns and need to be
accompanied by the actions that should be taken when they are
violated

  The monitoring infrastructure provides

  basic monitoring and diagnosis capabilities

  threat detection capabilities (i.e., detection of potential violations of
monitoring rules)

© George Spanoudakis

Ongoing work

  Extension of predictive capabilities of EVEREST to support
forecasting of violations of aggregate properties (e.g.,
MTTF, MTTR)

  Extension of EVEREST to support protocols for reliable
messaging (WS-ReliableMessaging) and message
authentication (WS-Security)

  Support for evolution of S&D solutions both at the pattern
and the implementation level

© George Spanoudakis

Main resources

  SERENITY Book
 Spanoudakis G., Mana A., Kokolakis S.: Security and dependability for
Ambient Intelligence, Advances in Information Security Book Series,
Springer, ISBN-978-0-387-88775-3, 2009

  SERENITY Forum

 www.serenity-forum.org

 Includes technical reports, papers, examples of S&D
patterns, tutorials e.t.c

© George Spanoudakis

Thank you

© George Spanoudakis

References (1)
1.  Lorenzoli D., Spanoudakis G.: Detection of Security and Dependability Threats: A Belief Based

Reasoning Approach , 3rd International Conference on Emerging Security Information, Systems and
Technologies (SECURWARE 2009), June 2009

2.  Spanoudakis G, Kloukinas C. Mahbub K.: The SERENITY Runtime Monitoring Framework, In Security
and Dependability for Ambient Intelligence, In Security and Dependability for Ambient Intelligence,
Information Security Series, Springer, pp. 213-238, 2009

3.  Tsigritis T. Spanoudakis G, Kloukinas C. Lorenzoli D.: Diagnosis and Threat detection capabilities of
the SERENITY Runtime Framework, In Security and Dependability for Ambient Intelligence,
Information Security Series, Springer, pp 239-272, 2009

4.  Kloukinas C., Spanoudakis G., Mahbub K.: Estimating Event Lifetimes for Distributed Runtime
Verification, 20th International Conference on Software Engineering and Knowledge Engineering,
2008

5.  Tsigritis T., Spanoudakis G.: Diagnosing Runtime Violations of Security & Dependability Properties,
20th International Conference on Software Engineering and Knowledge Engineering, July 2008

6.  Amalio N., Spanoudakis G.: From Monitoring Templates to Security Monitoring and Threat Detection,
2nd International Conference on Emerging Security Information, Systems and Technologies
(SECURWARE 2008), August 2008

7.  Kloukinas C., Spanoudakis G., : A Pattern-Driven Framework for Monitoring Security and
Dependability , 4th International Conference on Trust, Privacy and Security in Digital Business
(TrustBus`07), Lecture Notes in Computer Science 4657/2007, DOI:
10.1007/978-3-540-74409-2_23, September 2007

© George Spanoudakis

References (2)
7.  Tsigkritis T. Spanoudakis G, Kloukinas C. Lorenzoli D.: Diagnosis and Threat detection capabilities of

the SERENITY Runtime Framework, In Security and Dependability for Ambient Intelligence,
Information Security Series, Springer, pp 239-272, 2009

8.  Sanchez-Cid F. , Mana A., Spanoudakis G., Serrano D., and Munnoz A.: Representation of Security
and Dependability Solutions, In Security and Dependability for Ambient Intelligence, Information
Security Series, Springer, pp. 69-96, 2009

9.  Androutsopoulos K., Ballas K., Kloukinas C., Mahbub K., and Spanoudakis G, “V1 of Dynamic
Validation Prototype”, Deliverable A4.D3.1, SERENITY Project. Available from
http://www.serenity-forum.org/IMG/pdf/A4.D3.1_dynamic_validation_prototype_v1.2_final.pdf, 2006

10.  Mahbub K., Spanoudakis G., Kloukinas C. (2007): “V2 of dynamic validation prototype”. Deliverable
A4.D3.3, SERENITY Project, Available from:
http://www.serenity-forum.org/IMG/pdf/A4.D3.3_-_V2_of_Dynamic_validation_Prototype.pdf, 2007

11.  Spanoudakis G., Tsigkritis T. : “1st Version of Diagnosis Prototype”. Deliverable A4.D5.1, SERENITY
Project, Available from:
http://www.serenity-forum.org/IMG/pdf/
A4.D5.1_first_version_of_diagnosis_prototype_v1.1_final.pdf, 2008

12.  Amalio N., DiGiacomo V., Kloukinas C., Spanoudakis G.: “Mechanisms for detecting potential S&D
threats”. Deliverable A4.D4.1, SERENITY Project, Available from: http://www.serenity-forum.org,
2008

13.  Li K, et. Al: “Scenario S&D solutions v1”, Deliverable A7.D4.2, SERENITY Project, Available from:
http://www.serenity-forum.org, 2008

