Retroviruses: Key to discovery of oncogenic microRNAs

Karen Beemon Johns Hopkins University Baltimore, Maryland, USA

Avian Retroviruses

• Avian leukosis virus

	gag	pol		env	/				
• Dour									
• Rous	sarcon	na virus	(Replicatio	n compet	cent)				
	gag	рс	ol 👘	env	/	src			
Reticuloendotheliosis virus strain T (Replication deficient)									
Rev -A	g	ag	pol		en	V			
Rev -T	gag	pol	V-I	rel					

Why study cancer in chickens?

- 1. First cancer inducing viruses : Rous sarcoma virus (Rous, 1910) Avian leukosis virus (Ellerman and Bang, 1908)
- 2. First oncogene identified: src (Duesberg, 1975)
- 3. First tyrosine protein kinase: src (Hunter, 1980)
- 4. First retroviral insertional mutagenesis: myc (Hayward, 1981)
- 5. First oncomiR activated in tumors: bic = miR-155 (Hayward, 1989)
- 6. TERT first activated by insertional mutagenesis (Beemon, 2007)
- 7. Are other types of non-coding RNAS important for cancer?

ONE HUNDRED YEARS OF RETROVIRUSES

Peyton ROUS

AB, 1900; MD 1905, Johns Hopkins University Rous sarcoma virus 1910, Rockefeller Institute Nobel Prize 1966

Peyton Rous AB 1900, MD 1905 Johns Hopkins University

Age twenty Johns Hopkins University

Rous sarcoma virus oncogenesis

(

Avian Retroviruses

Rous sarcoma virus (RSV) (replication competent)

Captured oncogene Wang et al. 1975

p60^{Src} is a tyrosine kinase

Jamie Simon

c-Src inactivation

How does ALV cause lymphomas?

Avian leukosis virus (ALV)

yuu

	gag	pol	env				
Rous sarcoma virus (RSV)							
	aaa	loa	env				

Retroviruses integrate proviral genomes into host DNA

ALV integrates in B-cell integration cluster (bic) and myc genes in lymphomas

bic and *myc* oncogenes cooperate in tumorigenesis in chickens

Tam et al. (2002) JVI

miR-155 is conserved across species

bic processed to 22 nt miR-155: the first oncomiR

Biogenesis of miRNAs

- 1. Transcribed like protein coding genes RNA pol II
- 2. Hairpin is cleaved from pri-miRNA by Drosha
- 3. Pre-miRNA is transported by Exportin 5
- 4. Pre-miRNA is cleaved by Dicer
- 5. miRNA is loaded into RISC

Dicer - an RNASEIII endonuclease

- PAZ domain of Dicer binds the 3' 2nt overhang created by Drosha cleavage
- 2. The dsRBD of Dicer positions the 70 nt hairpin
- The catalytic residues are about 25 nts from the PAZ domain
- This distance acts as ruler resulting in miRNAs that are about 21 – 25nt in length

mRNA destabilization and degradation by miRNAs

- mRNA degradation is the predominant way that miRNAs inhibit protein synthesis
- miRISC can destabilize
 mRNAs by promoting
 deadenylation or
 decapping
- miRISC sequester mRNAs to P-Bodies for storage and eventual degradation

- 1. Seed sequence (nt 2 8) is important for target mRNA identification
- 2. miRNAs usually bind the 3'UTR of mRNAs
- 3. miRNA binding site usually more than 20 nt from the stop codon
- 4. miRNA binding site usually in AU rich regions

• What are the targets of miR155?

miRNAs upregulated by retroviral insertions may target tumor suppressors

Microarray of RCAS(*bic*)-infected CEFs

Gene name	Fold down
Sorting Nexin 12	3.71
JARID-2 (Jumonji)	2.50
Matrix Gla-protein precursor (MGP)	4.14
similar to secreted protein Isthmin	4.27
Bos taurus similar to downregulated in ovarian cancer 1 isoform 2	4.52
similar to tumor necrosis factor related protein 4	4.91
similar to deleted in colorectal carcinoma	5.29
Semaphorin 3C precursor (Collapsin-3) (COLL-3)	5.49
similar to PXMP4 OR peroxisomal membrane protein 4	6.02
collectin sub-family member 12 (COLEC12)	6.30
Serinus canaria growth-associated polypeptide (GAP-43)	6.95
Pgo2 mRNA for Primglo2	7.97

- potentiates Retinoblastoma gene
- Over-expression decreases cell growth
- recruits PRC2 (H3K27m2/3), essential for differentiation of ES cells

Assay potential target 3'UTRs in luciferase reporter

hJARID2 is a target of miR-155

miR-155 sponge abrogates repression of endogenous JARID2

JARID2 is an endogenous target of miR-155 in B-Cell Lymphomas

miR-155 promotes cell survival

What targets of miR-155 are involved?

Mohan Bolisetty

Over-expression of JARID2 increases apoptosis

- 1. miR-155 (*bic*) is first oncomiR (ALV induced tumors)
- 2. Multiple targets validated including Jumonji /JARID-2
- 3. miR-155 is Anti-apoptotic (Cooperates with *myc*)
- 4. Bic (mir155) has important roles in oncogenesis, inflammation, immune function, cardiac function, & KSHV
- 5. Cancer biomarker advanced human B cell lymphomas

Bic important for cancer, heart, inflammation and the immune system

- miR-155 up-regulated in Hu B-cell lymphomas, pancreatic, lung, breast & colon cancers
- Encoded by KSHV and Mareks disease viruses
- Activated by ALV, *rel* oncogene and EBV
- 6/6 Bic transgenic mice die of B-cell lymphomas in 6 months (Croce 2006)
- miR-155 is upregulated by inflammatory response in macrophages (Baltimore 2007)
- Bic knock-out mice defective in immune function (Bradley 2007); Bic needed to regulate germinal center response (Rajewsky 2007)

Bic targets DNA repair machinery (Croce 2010)

miR-155 is over-expressed in B-Cell lymphomas (human and chicken)

Mohan Bolisetty

Avian Retroviruses

• Avian leukosis virus

	gag		pol	env					
Rous sarcoma virus (Replication competent)									
gag			pol	env		src			
 Reticuloendotheliosis virus strain T (Replication deficient) 									
Rev -A	g	ag	pol		env				
3)		\backslash							
Rev -T	gag	ро	o/ v-	rel					

REV-T derived B-cell lymphomas have increased miR-155 levels

v-Rel upregulates miR-155 in CEFs

Down-regulated

Up-regulated

Many miRNAs up in v-*rel* B-cell line

Most previously identified

oncogenic/tumor suppressive miRNAs are correspondingly regulated

- miR 17-92 cluster is upregulated (4 – 9 fold)
- miR-18 family is upregulated (10 20 fold)
- miR-155 is upregulated (40 fold) highest expressed miRNA
- let-7 family miRNAs are downregulated (4 – 25 fold)
- miR-34b is dowregulated (8 fold)

• However two known tumor suppressors are upregulated:

- miR-29 family is upregulated (>32 fold)
- miR-34a is upregulated (32 fold)

v-Rel transformed B/T cells form colonies in soft agar

Mohan Bolisetty

miR-200a+b inhibit colony formation

Count colonies/quadrant 14 days

Nature Reviews | Cancer

Esquela-Kerscher et al. Nature Reviews Cancer 6, 259–269 (April 2006) | doi:10.1038/nrc1840

Conclusions

- v-Rel deregulates many different miRNAs in Bcell lymphomas, including miR-155. More miRs are induced than repressed.
- MAPK signaling pathways regulate subset of these miRNAs through AP-1 transcription factors
- miRNAs repressed by v-Rel (miR 200ab) diminish v-Rel transformation capability

miRNA regulation may be a more general indicator of lymphomas than proteins

Functional genomic analysis reveals distinct neoplastic phenotypes associated with c-myb mutation in the bursa of Fabricius

Paul E Neiman^{1,2}, Jovana J Grbiç¹, Tatjana S Polony³, Robert Kimmel¹, Sandra J Bowers¹, Jeffrey Delrow¹ and Karen L Beemon³

Retroviruses identify oncogenic miRNAs

Clurman and Hayward 1989; Landais et al. 2005, 2007; Cui et al. 2

ALVs induce tumors by insertional mutagenesis

Common ALV integrations upstream of TERT in B cell lymphomas

Southern blotting

Yang et al. PNAS 2007

What is the role of Telomerase in cancer?

¢

•

•

•

•

€

Human telomerase

Canonical Functions

- Protect telomere repeats from erosion
- Prevent chromosome fusions
- Immortalize cells

Non Canonical Functions

- Response to DNA damage
- hTR Promotes cell growth
 - Mitochondrial localization
 - Reduces neurotoxicity
 - Inhibits apoptosis

SUMMARY

OncomiR-155: promotes cell survival Targets JARID2 Upregulated by Rel transcription factor and ALV integration

TERT appears to be activated in B cell tumors

Are other types of non-coding RNAs activated by ALV integration in tumors?

Acknowledgements

<u>Current Lab</u> Yingying Li, MD Johanna Withers Mohan Bolisetty Tamara Ashvetiya James Justice James Stegman

<u>Former Lab</u> Sal Arrigo George Barker Jason Weil Rena Xian Feng Yang Jason LeBlanc Keith Giles Jeremy Wilusz

<u>Collaborators</u> Robin Morgan, U. Delaware Paul Neiman, FHCRC Bill Hayward, Wayne Tam, NYC

Yun-Xing Wang, NCI

