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What is a cryptosystem?
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The mathematical “black box”
model of cryptography:
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Mathematical cryptanalysis had a major 
impact on the outcome of WW2:

Breaking the German ENIGMA and Japanese PURPLE:

� Defeated the German bombing of England in 1940

� Almost prevented the Japanese attack on Pearl Harbor

� Helped the Americans defeat the Japanese navy at Midway

� Almost prevented the German invasion of the USSR in 1941

� Helped Montgomery stop Rommel at El Alamein in 1942



However, modern cryptosystems cannot be 
broken with such mathematical techniques

� Today, we have a much better understanding of how 
to construct cryptosystems which resist all the known 
types of mathematical attacks

� By using faster microprocessors, cryptographers can 
use more complicated cryptosystems with longer keys

� When the key length is doubled, the complexity of 
encryption is typically doubled, whereas the 
complexity of exhaustive search is squared.

� So in theory, cryptanalysts should be out of work…



The difference between 
theory and practice:



An unfair attack: stealing the keys
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Some key stealing techniques:

� During wartime: The german U-571 submarine

� Espionage: The Walker family of spies

� Dirty tricks: Keys stolen from diplomatic mail and safes

� Trojan horses: Capturing passwords entered into PC’s

� Tampered cryptosystems: The Swiss company CRYPTO AG



A new technique (published in 2008):

The “cold boot” technique to extract disk encryption keys: 

� Assume that a lost or stolen laptop has important data 
protected by a disk encryption program such as bitlocker

� Assume that the encryption scheme is the strong  AES

� Assume that the stolen laptop is in sleep mode, and that 
resuming operation requires a long unknown password

� The AES encryption key is kept in the volatile RAM
inside the laptop, which is erased if we turn off the 
computer or when the battery runs out



A new technique (February 2008):

The new observation: 

� Data can be kept alive in unpowered RAM for tens of 
seconds if we cool it before cutting power 

� The data deteriorates over time, but at a rate that 
depends on the temperature



Data can be kept alive for many seconds in unpowered
RAM by cooling it with a cheap can of Quick-Freeze:



Data can be kept alive for many seconds in unpowered
RAM by cooling it with a cheap can of Quick-Freeze:



Data can be kept alive for longer 
periods by using liquid nitrogen:



Picture kept in frozen unpowered
RAM for 30 or 60 seconds:



How to overcome all the known types 
of PC disk encryption techniques:

After cooling the RAM chips: 

� Reboot the laptop via a small operating system located in 
a disk-on-key 

� Quickly dump the memory contents into the disk-on-key

� Analyze the data to find a slightly corrupted AES key 

� Use the fact that the 128-bit key is expanded in memory 
into 10 related 128-bit subkeys, which form an excellent 
error correcting code…



The “grey box” view of cryptography:
Side channel attacks
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Acoustic Leakage from PC’s



The sound of GnuPG RSA signatures



Loops of CPU ops

HLT

MUL

ADD

FMUL

NOP

mem

access

HLT

MUL

ADD

FMUL

NOP

mem



Application of Quick-Freeze to 
motherboard capacitors during a MUL loop



Example: How easy is it to record the 
power consumption of some target PC?

Cutting the power cord will reboot the PC,  and 
openning a sealed PC enclosure will take too long

� A possible solution: the USB connector 

� It supplies both power and data to external devices

� Many security programs control the USB connection



The Spectrum of USB power



The real-time signal of USB power at 
294 KHz during OPENSSL decryption



How to exploit such power traces: A new 
attack on the RSA scheme (Summer 2007):

� To decrypt ciphertexts or sign messages, the device 
computes xd (mod n) where d is the secret RSA key

� Since d is very large, the exponentiation is typically 
done by a sequence of squaring and multiplying:

� X25=(((((x2)*x)2)2)2)*x

� This can be summarized as    S M S S S M



Can We Easily Distinguish Between S and M?

� In the past, they were implemented by very 
different algorithms, which made it easy to 
distinguish them by just looking at the power 
consumption curve

� This is no longer true, and to distinguish them we 
seem to need a large number of curves and 
sophisticated signal processing

� But now there is an exceptionally simple new attack…
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Power Consumption Curves Look Like extremely 
Complicated Functions of the Numbers We Multiply:

S: Squaring M: Multiplication



The new idea:

� Comparing two curves can serve as an equality oracle:

� If we multiply a*b and c*d, then the two curves will 
look similar if a=c and b=d, and different otherwise

� Our goal now is to perform only two exponentiations
and compare the corresponding segments in the two 
power consumption curves



The new idea:

� Ask the smart card to exponentiate x and –x (mod n)
(they look like totally different binary strings)

� Consider the sequence S S M S M S S S S M S S M

� All the multiplications M will look different

� Every S immediately after M will look different

� Every other S will look the same

� If we find all those equal S, we can simply fill the gaps 
between them with M S to find the secret d! 
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S: Squaring M: Multiplication
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Another side channel attack on RSA:
Bug Attack (2008)

� Assume that a popular microprocessor has a subtle 
bug which affects all the manufactured chips due to 
a design error. 

� The best known example is Intel’s pentium division 
bug from 1994, but many other subtle bugs were 
discovered afterwards

� Even if Intel learned its lesson, there are many 
other manufacturers of microprocessors, and many 
designers of standard cell libraries for FPGA’s.



A new side channel attack on RSA:
Bug Attack

� Assume that a particular microprocessor (used in millions 
of devices which implement the RSA cryptosystem) has 
an extremely subtle multiplication bug: For a single pair 
of 64-bit integers a and b, their 128-bit product axb is 
computed incorrectly (eg, just in the least significant bit)

� This is extremely hard to detect experimentally

� Assume that the American NSA secretly discovers (or 
even asks the chip manufacturer to plant) such a and b

� We will now show that any such multiplication bug can 
lead to a devastating attack on the RSA cryptosystem



A new side channel attack on RSA:
Bug Attack

Here is one way in which the NSA could breal any RSA key:

� Knowing the public key n=pq of the faulty device (but not 
its factors p and q), the NSA can easily compute a 
number c which is guaranteed to be between p and q

� In particular, let c be the square root of n, rounded to 
the nearest integer. Then c is always located between 
the smaller prime p and the larger prime q.

� For example, if n=7x11=77, then c=9 satisfies 7<c<11.



A new side channel attack on RSA:
Bug Attack

� Any number which is sufficiently close to the square 
root c of n is also very likely to be between p and q

� In particular, the following half size number x
whose low order words contain the problematic 
words a and b (which are improperly multiplied) is 
also very likely to be between p and b:

0bacc00000



The NSA uses this x as a 
chosen ciphertext:

� The first step in RSA-CRT decryption is to reduce the 
input mod p and q. Since x is bigger than p but smaller than 
q, it gets randomized mod p but remains unchanged mod q. 

� Each exponentiation always starts by squaring the input. 
This squaring almost certainly uses the natural division 
into the longest words which can be multiplied by the 
microprocessor’s built-in multiplier.

� Consequently, the squaring mod q will perform the 
erroneous product axb, while the squaring mod p will be 
very unlikely to use this multiplication, and will be correct.

0bacc00000



Factoring n given the wrong answer:

� Given the answer y and knowing the public exponent e, the 
NSA can compute z=ye-x (mod n). This z is zero mod p and 
nonzero mod q, so gcd(z,n) is very likely to be the secret p.

� This would enable an organization such as the NSA to 
break any key which is used in any RSA-based software
running on any device whose microprocessor has any 
multiplication bug, using a single chosen message!

� I assume that many security organizations will now rush to 
test the multipliers of all the microprocessors they use…



Cache Attacks:

� Pure software attacks, developed by Osvik
Shamir and Tromer in 2006

� Very efficient (e.g., full AES key extraction 
from Linux encrypted file system in 65 ms)

� Require only the ability to run untrusted code
(e.g., ActiveX, Java applets, managed .NET, 
JavaScript) in parallel to the privileged 
encryption code on the same target machine

� Can be used to attack virtualized machines in 
cloud computing systems



CPU core
(60% speed
increase
per year)

Main memory
(7-9% latency 
decrease per year)

CPU CPU cache 
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Basic cache technology

Typical latency: 50-150ns

Typical latency: 0.3ns
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char p[16], k[16];                     // plaintext and key

int32 T0[256],T1[256],T2[256],T3[256]; // lookup tables

int32 Col[4];                          // intermediate state

...

/* Round 1 */

Col[0]←←←← T0[p[ 0]©k[ 0]] ⊕⊕⊕⊕ T1[p[ 5]©k[ 5]] ⊕⊕⊕⊕

T2[p[10]©k[10]] ⊕⊕⊕⊕ T3[p[15]©k[15]];

Col[1]←←←← T0[p[ 4]©k[ 4]] ⊕⊕⊕⊕ T1[p[ 9]©k[ 9]] ⊕⊕⊕⊕

T2[p[14]©k[14]] ⊕⊕⊕⊕ T3[p[ 3]©k[ 3]];

Col[2]←←←← T0[p[ 8]©k[ 8]] ⊕⊕⊕⊕ T1[p[13]©k[13]] ⊕⊕⊕⊕

T2[p[ 2]©k[ 2]] ⊕⊕⊕⊕ T3[p[ 7]©k[ 7]];

Col[3]←←←← T0[p[12]©k[12]] ⊕⊕⊕⊕ T1[p[ 1]©k[ 1]] ⊕⊕⊕⊕

T2[p[ 6]©k[ 6]] ⊕⊕⊕⊕ T3[p[11]©k[11]];

A typical software implementation of AES

lookup index = plaintext ⊕ key
(and the parameters are favorable to the attack)
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Programs compete for cache locations:
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Exploiting the effect of encryption on cache:
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Measurement via effect of encryption on 
cache
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Measurement via effect of encryption on 
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Summary:

�New types of side channel attacks are found and 
published every few months. Recent discoveries  
of side channel attacks far outnumber those of 
classical cryptanalytic attacks

� Side channel attacks are much more practically 
significant than classical mathematical attacks

�We should completely rethink the issues of how to 
develop and implement new crypto applications, 
and how to formally prove their security


