
HOW CRYPTOSYSTEMS
ARE REALLY BROKEN

Adi Shamir

Computer Science

The Weizmann Institute

Israel

What is a cryptosystem?

Encryption

By Alice
Decryption

By Bob

K K

plaintext plaintext

ciphertext

Sending a plaintext securely from Alice to Bob:

good morning good morning

zqvkjypxbtc

The mathematical “black box”
model of cryptography:

Encryption

By Alice
Decryption

By Bob

K K

plaintext plaintext

ciphertext

cryptanalystOccasional

known/chosen

access

Occasional

known/chosen

access
Always

accessible

Mathematical cryptanalysis had a major
impact on the outcome of WW2:

Breaking the German ENIGMA and Japanese PURPLE:

� Defeated the German bombing of England in 1940

� Almost prevented the Japanese attack on Pearl Harbor

� Helped the Americans defeat the Japanese navy at Midway

� Almost prevented the German invasion of the USSR in 1941

� Helped Montgomery stop Rommel at El Alamein in 1942

However, modern cryptosystems cannot be
broken with such mathematical techniques

� Today, we have a much better understanding of how
to construct cryptosystems which resist all the known
types of mathematical attacks

� By using faster microprocessors, cryptographers can
use more complicated cryptosystems with longer keys

� When the key length is doubled, the complexity of
encryption is typically doubled, whereas the
complexity of exhaustive search is squared.

� So in theory, cryptanalysts should be out of work…

The difference between
theory and practice:

An unfair attack: stealing the keys

Encryption

By Alice
Decryption

By Bob

K K

plaintext plaintext

ciphertext

cryptanalyst

Some key stealing techniques:

� During wartime: The german U-571 submarine

� Espionage: The Walker family of spies

� Dirty tricks: Keys stolen from diplomatic mail and safes

� Trojan horses: Capturing passwords entered into PC’s

� Tampered cryptosystems: The Swiss company CRYPTO AG

A new technique (published in 2008):

The “cold boot” technique to extract disk encryption keys:

� Assume that a lost or stolen laptop has important data
protected by a disk encryption program such as bitlocker

� Assume that the encryption scheme is the strong AES

� Assume that the stolen laptop is in sleep mode, and that
resuming operation requires a long unknown password

� The AES encryption key is kept in the volatile RAM
inside the laptop, which is erased if we turn off the
computer or when the battery runs out

A new technique (February 2008):

The new observation:

� Data can be kept alive in unpowered RAM for tens of
seconds if we cool it before cutting power

� The data deteriorates over time, but at a rate that
depends on the temperature

Data can be kept alive for many seconds in unpowered
RAM by cooling it with a cheap can of Quick-Freeze:

Data can be kept alive for many seconds in unpowered
RAM by cooling it with a cheap can of Quick-Freeze:

Data can be kept alive for longer
periods by using liquid nitrogen:

Picture kept in frozen unpowered
RAM for 30 or 60 seconds:

How to overcome all the known types
of PC disk encryption techniques:

After cooling the RAM chips:

� Reboot the laptop via a small operating system located in
a disk-on-key

� Quickly dump the memory contents into the disk-on-key

� Analyze the data to find a slightly corrupted AES key

� Use the fact that the 128-bit key is expanded in memory
into 10 related 128-bit subkeys, which form an excellent
error correcting code…

The “grey box” view of cryptography:
Side channel attacks

Encryption

By Alice
Decryption

By Bob

K K

plaintext plaintext

ciphertext

cryptanalyst

Acoustic Leakage from PC’s

The sound of GnuPG RSA signatures

Loops of CPU ops

HLT

MUL

ADD

FMUL

NOP

mem

access

HLT

MUL

ADD

FMUL

NOP

mem

Application of Quick-Freeze to
motherboard capacitors during a MUL loop

Example: How easy is it to record the
power consumption of some target PC?

Cutting the power cord will reboot the PC, and
openning a sealed PC enclosure will take too long

� A possible solution: the USB connector

� It supplies both power and data to external devices

� Many security programs control the USB connection

The Spectrum of USB power

The real-time signal of USB power at
294 KHz during OPENSSL decryption

How to exploit such power traces: A new
attack on the RSA scheme (Summer 2007):

� To decrypt ciphertexts or sign messages, the device
computes xd (mod n) where d is the secret RSA key

� Since d is very large, the exponentiation is typically
done by a sequence of squaring and multiplying:

� X25=(((((x2)*x)2)2)2)*x

� This can be summarized as S M S S S M

Can We Easily Distinguish Between S and M?

� In the past, they were implemented by very
different algorithms, which made it easy to
distinguish them by just looking at the power
consumption curve

� This is no longer true, and to distinguish them we
seem to need a large number of curves and
sophisticated signal processing

� But now there is an exceptionally simple new attack…

M SS SS SS M

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
6

0

50

100

150

200

250

M SS SS SS M

Reference waveform

Z

(1)

(2)

Power Consumption Curves Look Like extremely
Complicated Functions of the Numbers We Multiply:

S: Squaring M: Multiplication

The new idea:

� Comparing two curves can serve as an equality oracle:

� If we multiply a*b and c*d, then the two curves will
look similar if a=c and b=d, and different otherwise

� Our goal now is to perform only two exponentiations
and compare the corresponding segments in the two
power consumption curves

The new idea:

� Ask the smart card to exponentiate x and –x (mod n)
(they look like totally different binary strings)

� Consider the sequence S S M S M S S S S M S S M

� All the multiplications M will look different

� Every S immediately after M will look different

� Every other S will look the same

� If we find all those equal S, we can simply fill the gaps
between them with M S to find the secret d!

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
6

0

50

100

150

200

250

M SS SS SS M

Target waveform

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
6

0

50

100

150

200

250

M SS SS SS M

Reference waveform

Region of interest (54M points)

Y

Z

(1)

(2)

Exponentiating x and –x (mod n):

S: Squaring M: Multiplication

0 1 2 3 4 5 6

x 10
5

−20

−15

−10

−5

0

5

10

15

20

Subtraction

after low

pass filtering

•Subtracting the two power consumption curves:

Another side channel attack on RSA:
Bug Attack (2008)

� Assume that a popular microprocessor has a subtle
bug which affects all the manufactured chips due to
a design error.

� The best known example is Intel’s pentium division
bug from 1994, but many other subtle bugs were
discovered afterwards

� Even if Intel learned its lesson, there are many
other manufacturers of microprocessors, and many
designers of standard cell libraries for FPGA’s.

A new side channel attack on RSA:
Bug Attack

� Assume that a particular microprocessor (used in millions
of devices which implement the RSA cryptosystem) has
an extremely subtle multiplication bug: For a single pair
of 64-bit integers a and b, their 128-bit product axb is
computed incorrectly (eg, just in the least significant bit)

� This is extremely hard to detect experimentally

� Assume that the American NSA secretly discovers (or
even asks the chip manufacturer to plant) such a and b

� We will now show that any such multiplication bug can
lead to a devastating attack on the RSA cryptosystem

A new side channel attack on RSA:
Bug Attack

Here is one way in which the NSA could breal any RSA key:

� Knowing the public key n=pq of the faulty device (but not
its factors p and q), the NSA can easily compute a
number c which is guaranteed to be between p and q

� In particular, let c be the square root of n, rounded to
the nearest integer. Then c is always located between
the smaller prime p and the larger prime q.

� For example, if n=7x11=77, then c=9 satisfies 7<c<11.

A new side channel attack on RSA:
Bug Attack

� Any number which is sufficiently close to the square
root c of n is also very likely to be between p and q

� In particular, the following half size number x
whose low order words contain the problematic
words a and b (which are improperly multiplied) is
also very likely to be between p and b:

0bacc00000

The NSA uses this x as a
chosen ciphertext:

� The first step in RSA-CRT decryption is to reduce the
input mod p and q. Since x is bigger than p but smaller than
q, it gets randomized mod p but remains unchanged mod q.

� Each exponentiation always starts by squaring the input.
This squaring almost certainly uses the natural division
into the longest words which can be multiplied by the
microprocessor’s built-in multiplier.

� Consequently, the squaring mod q will perform the
erroneous product axb, while the squaring mod p will be
very unlikely to use this multiplication, and will be correct.

0bacc00000

Factoring n given the wrong answer:

� Given the answer y and knowing the public exponent e, the
NSA can compute z=ye-x (mod n). This z is zero mod p and
nonzero mod q, so gcd(z,n) is very likely to be the secret p.

� This would enable an organization such as the NSA to
break any key which is used in any RSA-based software
running on any device whose microprocessor has any
multiplication bug, using a single chosen message!

� I assume that many security organizations will now rush to
test the multipliers of all the microprocessors they use…

Cache Attacks:

� Pure software attacks, developed by Osvik
Shamir and Tromer in 2006

� Very efficient (e.g., full AES key extraction
from Linux encrypted file system in 65 ms)

� Require only the ability to run untrusted code
(e.g., ActiveX, Java applets, managed .NET,
JavaScript) in parallel to the privileged
encryption code on the same target machine

� Can be used to attack virtualized machines in
cloud computing systems

CPU core
(60% speed
increase
per year)

Main memory
(7-9% latency
decrease per year)

CPU CPU cache
memory

Basic cache technology

Typical latency: 50-150ns

Typical latency: 0.3ns

D
R
A
M

c
a
c
h
e

cache line

(64 bytes)

memory block
(64 bytes)

ca
ch
e s

et

(4
 ca

ch
e l
ine

s)

char p[16], k[16]; // plaintext and key

int32 T0[256],T1[256],T2[256],T3[256]; // lookup tables

int32 Col[4]; // intermediate state

...

/* Round 1 */

Col[0]←←←← T0[p[0]©k[0]] ⊕⊕⊕⊕ T1[p[5]©k[5]] ⊕⊕⊕⊕

T2[p[10]©k[10]] ⊕⊕⊕⊕ T3[p[15]©k[15]];

Col[1]←←←← T0[p[4]©k[4]] ⊕⊕⊕⊕ T1[p[9]©k[9]] ⊕⊕⊕⊕

T2[p[14]©k[14]] ⊕⊕⊕⊕ T3[p[3]©k[3]];

Col[2]←←←← T0[p[8]©k[8]] ⊕⊕⊕⊕ T1[p[13]©k[13]] ⊕⊕⊕⊕

T2[p[2]©k[2]] ⊕⊕⊕⊕ T3[p[7]©k[7]];

Col[3]←←←← T0[p[12]©k[12]] ⊕⊕⊕⊕ T1[p[1]©k[1]] ⊕⊕⊕⊕

T2[p[6]©k[6]] ⊕⊕⊕⊕ T3[p[11]©k[11]];

A typical software implementation of AES

lookup index = plaintext ⊕ key
(and the parameters are favorable to the attack)

The effect of encryptions on the cache:
D
R
A
M

c
a
c
h
e

T0
A
t
t
a
c
k
e
r

m
e
m
o
r
y

Programs compete for cache locations:
D
R
A
M

c
a
c
h
e

T0
A
t
t
a
c
k
e
r

m
e
m
o
r
y

Exploiting the effect of encryption on cache:
D
R
A
M

c
a
c
h
e

T0
A
t
t
a
c
k
e
r

m
e
m
o
r
y

1. Completely
evict tables
from cache

Measurement via effect of encryption on
cache

D
R
A
M

c
a
c
h
e

T0
A
t
t
a
c
k
e
r

m
e
m
o
r
y

1. Completely
evict tables
from cache

2. Trigger a
single
encryption

Measurement via effect of encryption on
cache

D
R
A
M

c
a
c
h
e

T0
A
t
t
a
c
k
e
r

m
e
m
o
r
y

1. Completely
evict tables
from cache

2. Trigger a
single
encryption

3. Access
attacker
memory
again and
see which
cache sets
are slow

Summary:

�New types of side channel attacks are found and
published every few months. Recent discoveries
of side channel attacks far outnumber those of
classical cryptanalytic attacks

� Side channel attacks are much more practically
significant than classical mathematical attacks

�We should completely rethink the issues of how to
develop and implement new crypto applications,
and how to formally prove their security

