
1

RANDOM GRAPHS IN

CRYPTOGRAPHY

Adi Shamir

The Weizmann Institute

Israel

June 28-th 2010

The Onassis Foundation Science Lecture Series

2

The Two Types of Crypto Research:

Information-theoretic:

Assumes that:

primitives are perfect

opponent all powerful

Tries to bound:
Statistical properties

Information derived

Examples:
OTP

secret sharing

Complexity-theoretic:

Assumes that:

primitives are imperfect

opponent is bounded

Tries to bound:
runtime of attack

memory required

Examples:
AES

RSA key exchange

But there is a third type, which combines the two

3

The Two Types of Crypto Research:

Information-theoretic:

Assumes that:

primitives are perfect

Tries to bound:

Complexity-theoretic:

Assumes that:

opponent is bounded

Tries to bound:
runtime of attack

memory required

Examples:
Finding collisions or inverting edges in random graphs

4

Cryptography and Randomness:

The notion of random functions (oracles)

over the finite domain {0,1,2,…,N-1}:

- truly random when applied to fresh inputs

- consistent when applied to previously used inputs

f(0)=37

f(1)=92

f(2)=78

…

The random graph associated with f: x f(x)

5

Cryptography and Randomness:

When the function f is a permutation, its associated
graph G is quite boring:

6

Random Graphs Have Much More Interesting Structure:

7

Another Example of a Random Graph:

8

Cryptography and Randomness:

There is a huge literature on:

The distribution of component sizes, tree sizes, cycle
sizes, vertex in-degrees, number of predecessors, etc.

In this talk I’ll concentrate on some algorithmic results

from the last 6 years related to collision finding and

inversion algorithms

Note that in cryptanalysis, constants are important!

9

Interesting algorithmic problems in

breaking the security of hash functions:

Find some simple collision

(assuming that we can only

choose random points and

move forward along edges):

- Find some multicollision

(useful eg in breaking

concatenated hash fn’s):

10

A random path in a random graph defines a collision:

11

Finding such collisions

is a very well studied problem:

- Floyd

- Pollard

- Brent

- Yao

- …

And yet there are new surprising ideas!

12

The best known technique:

Floyd’s two finger algorithm
- Keep two pointers

- Run one of them at normal speed, and the

other at double speed, until they collide

13

Floyd’s two finger algorithm:
- Keep two pointers

- Run one of them at normal speed, and the

other at double speed, until they collide

14

Floyd’s two finger algorithm:
- Keep two pointers

- Run one of them at normal speed, and the

other at double speed, until they collide

15

Floyd’s two finger algorithm:
- Keep two pointers

- Run one of them at normal speed, and the

other at double speed, until they collide

16

Floyd’s two finger algorithm:
- Keep two pointers

- Run one of them at normal speed, and the

other at double speed, until they collide

17

Floyd’s two finger algorithm:
- Keep two pointers

- Run one of them at normal speed, and the

other at double speed, until they collide

18

Floyd’s two finger algorithm:
- Keep two pointers

- Run one of them at normal speed, and the

other at double speed, until they collide

19

Floyd’s two finger algorithm:
- Keep two pointers

- Run one of them at normal speed, and the

other at double speed, until they collide

20

Floyd’s two finger algorithm:
- Keep two pointers

- Run one of them at normal speed, and the

other at double speed, until they collide

21

Floyd’s two finger algorithm:
- Keep two pointers

- Run one of them at normal speed, and the

other at double speed, until they collide

22

Can we use Floyd’s algorithm to

find the entry point into the cycle?

23

Can we use Floyd’s algorithm to

find the entry point into the cycle?
-First find the meeting point

24

Can we use Floyd’s algorithm to

find the entry point into the cycle?
- first find the meeting point

- move one of the fingers back to the beginning

25

Can we use Floyd’s algorithm to

find the entry point into the cycle?
- first find the meeting point

- move one of the fingers back to the beginning

- move the two fingers at equal speed

26

Can we use Floyd’s algorithm to

find the entry point into the cycle?
- first find the meeting point

- move one of the fingers back to the beginning

- move the two fingers at equal speed

27

Can we use Floyd’s algorithm to

find the entry point into the cycle?
- first find the meeting point

- move one of the fingers back to the beginning

- move the two fingers at equal speed

28

Why does it work?

(a good exercise for students)

29

Is this the most efficient

cycle detection algorithm?

30

Is this the most efficient

cycle detection algorithm?

- When the path has n vertices and the tail is

short, Floyd’s algorithm requires about 3n steps,

and its extension requires up to 5n steps

31

Is this the most efficient

cycle detection algorithm?

- When the cycle is short, the fast finger can

traverse it many times without noticing

32

A very elegant solution:

Published by Gabriel Nivasch in 2004

33

Properties of the Nivasch algorithm:
- Uses a single finger

- Uses negligible amount of memory

- Stops almost immediately after recycling

- Efficient for all possible lengths of cycle and tail

- Ideal for fast hardware implementations

34

The basic idea of the algorithm:
- Maintain a stack of values, which is initially empty

- Insert each new value into the top of the stack

- Force the values in the stack to be monotonically

increasing

43 67 9 50 8 21

35

The Stack Algorithm:

43 67 9 50 8 21

36

The Stack Algorithm:

43 67 9 50 8 21

7

37

The Stack Algorithm:

43 67 9 50 8 21

07

38

The Stack Algorithm:

43 67 9 50 8 21

0

39

The Stack Algorithm:

43 67 9 50 8 21

30

40

The Stack Algorithm:

43 67 9 50 8 21

830

41

The Stack Algorithm:

43 67 9 50 8 21

6830

42

The Stack Algorithm:

43 67 9 50 8 21

630

43

The Stack Algorithm:

43 67 9 50 8 21

1630

44

The Stack Algorithm:

43 67 9 50 8 21

130

45

The Stack Algorithm:

43 67 9 50 8 21

10

46

The Stack Algorithm:

43 67 9 50 8 21

910

47

The Stack Algorithm:

43 67 9 50 8 21

2910

48

The Stack Algorithm:

43 67 9 50 8 21

210

49

The Stack Algorithm:

43 67 9 50 8 21

5210

50

The Stack Algorithm:

43 67 9 50 8 21

45210

51

The Stack Algorithm:

43 67 9 50 8 21

4210

52

The Stack Algorithm:

43 67 9 50 8 21

34210

53

The Stack Algorithm:

43 67 9 50 8 21

3210

54

The Stack Algorithm:

43 67 9 50 8 21

83210

55

The Stack Algorithm:

43 67 9 50 8 21

683210

56

The Stack Algorithm:

43 67 9 50 8 21

63210

57

The Stack Algorithm:

43 67 9 50 8 21

163210

58

The Stack Algorithm:

43 67 9 50 8 21

13210

59

The Stack Algorithm:

43 67 9 50 8 21

1210

60

The Stack Algorithm:

43 67 9 50 8 21

110

61

Stop when two identical values

appear at the top of the stack

43 67 9 50 8 21

110

62

Claim: The maximal size of the stack is expected to be only

logarithmic in the path length, requiring negligible memory

43 67 9 50 8 21

110

63

Claim: The stack algorithm always stops during the second

cycle, regardless of the length of the cycle or its tail

43 67 9 50 8 21

110

64

Proof: The smallest value on the cycle cannot be eliminated

by any later value. Its second occurrence will eliminate all

the higher values separating them on the stack.

43 67 9 50 8 21

110

65

The smallest value in the cycle is located at a random

position, so we expect to go through the cycle at least once

and at most twice (1.5 times on average)

43 67 9 50 8 21

110

66

Improvement: Partition the values into k types, and use a

different stack for each type. Stop the algorithm when

repetition is found in some stack.

43 67 9 50 8 21

67

The new expected running time: (1+1/k)*n. Note that n is

the minimum possible running time of any cycle detecting

algorithm, and for k=100 we exceed it by only 1%

43 67 9 50 8 21

330

68

Unlike Floyd’s algorithm, the Nivasch algorithm provides

excellent approximations for the length of the tail and cycle

as soon as we find a repeated value, with no extra work

43 67 9 50 8 21

330

69

Note that when we stop, the bottom value in each stack

contains the smallest value of that type, and that these k

values are uniformly distributed along the tail and cycle

43 67 9 50 8 21

330

70

Adding two special points to the k stack bottoms, at

least one must be in the tail and at least one must be

in the cycle, regardless of their sizes

43 67 9 50 8 21

330

71

We can now find the two closest points (e.g., 0 and 2)

which are just behind the collision point. We can thus

find the collision after a short synchronized walk

43 67 9 50 8 21

330

72

Finding Multicollisions in Random Graphs:

A beautiful new result was presented in
December 2009 by Joux and Lucks:

3-way collisions can be found in time O(N2/3) and
space O(N1/3)

Time and space can be traded off along the curve
TM=N for M<N1/3

The tradeoff can be generalized from 3-collisions
to r-collisions for any r>3

73

Lower bounds on Multicollision Finding:

An unpublished lower bound I recently

obtained while working on the same

problem proves the optimality of the Joux

and Lucks algorithm for 3-collisions

Note that for 2-way collisions, we can
use a constant amount of memory and
get a N1/2 time bound.

74

The Model of Computation:

At any moment, the attacker can:

- Store a fresh random vertex in some memory

location, replacing its old contents

- Copy one memory location into another

- Replace the vertex stored in some memory

location by its successor vertex

75

The Basic Idea of the Lower Bound:
Given: M memory locations

Define: The accessible graph

76

The Basic Idea of the Lower Bound:
Consider all the 2-way

collisions in the current

accessible subgraph

77

The Lower Bound Proof:

The accessible graph is a dynamic, time-dependent
subgraph of the full random graph.

The main observation: The accessible subgraph defined by
M stored points can contain at most M 2-way collisions, and
every 3-way collision was at some stage a 2-way collision
which was hit by a new edge from a third direction

The attacker might not be currently aware of most of the 2-
way collisions in his current accessible subgraph, but he
could find them later by following some paths in a
particular order from the stored vertices.

78

The Lower Bound Proof:

At the end of the 3-way collision finding algorithm, the

attacker is fully aware of the 3-way collision since he

has to supply its 3 predecessors

Consider the first point in time in which the attacker

traversed an edge whose head is an implicit 2-way

collision defined by the currently stored vertices (such

a time must exist)

Since the number of 2-way collisions is bounded by

O(M), this is unlikely to happen if he traverses fewer

than O(N/M) edges altogether in the whole algorithm

79

A Different Problem: Inverting Edges

The Fundamental Problem of Cryptanalysis:

Given a ciphertext, find the corresponding key

Given a hash value, find a first or second preimage

The mathematical problem: Invert an easily
computed random function f where f(x)=Ex(0)
or f(x)=H(x)

80

The Random Graph Defined by f:
Goal: Go backwards

Means: Going forwards

81

Hellman’s T/M Tradeoff (1979)
Preprocessing phase:

Choose m random starting points, evaluate chains of length t.

Store only pairs of (startpoint,endpoint) sorted by endpoints.

Online phase: from the given y=f(x) complete the chain.

Find x by re-calculating the chain from its startpoint.

82

How can we cover this graph by chains?

The main problem:

Long chains quickly

converge

83

Use t “independent” tables from t “related” functions

fi(x)=f(x+ i mod N)

– note that inversion of fi ⇒ inversion of f.

Yields a general T/M tradeoff: TM2=N2.

Typical complexities: Time T=N2/3 , space M=N2/3

Hellman’s Solution:

84

Oechslin’s Rainbow Tables (2003)

85

Use a different sequence of functions

along each path, such as:

111222333 or 123123123 or

pseudorandom e.g. 1221211

There are many other possible

tradeoff schemes:

Make the choice of the next function

dependent on previous values

86

There was already a slight problem with the

multiple graphs of Hellman’s scheme, since

they are not really independent, and there are

subtle relationships between their structures

Oechslin’s graphs are even weirder, since

their multiple functions and layered structure

does not look like a random graph at all

What kind of random graph are we

working with in such schemes?

87

Introduced a new notion of random graph

called Stateful Random Graph

Barkan, Biham, and Shamir (Crypto 2006):

Used it to prove rigorous lower bounds on

the achievable time/memory tradeoffs of

any scheme which is based on such graphs,

including Hellman, Oechslin, and all their

many known variants and extensions

88

The Random Stateful Graph Model

• The nodes in the graph are pairs (yi , si), with N possible images

yi and S possible states si.

• The scheme designer can choose any U, then random f is given.

• The increased number of nodes (NS) can reduce the probability

of collisions and a good U can create more structured graphs.

• Examples of states: Table# in Hellman, column# in Oechslin.

• We call it a hidden state, since its value is unknown to the

attacker and has to be guessed when he tries to invert an image y

.

y1y0

s0 U

x1

s1
f

y2

U

x2

s2
f

y2

U

x2

s2
f

y2

U

x2

s2
f

89

The Stateful-Random-Graph Model – cont

U in Hellman:

xi=yi-1 + si-1 mod N

si=si-1

y1y0

s0 U

x1

s1
f

y2

U

x2

s2
f

y2

U

x2

s2
f

y2

U

x2

s2
f

90

The Stateful-Random-Graph Model – cont

U in Rainbow:

xi=yi-1 + si-1 mod N

si=si-1 + 1 mod S.

y1y0

s0 U

x1

s1
f

y2

U

x2

s2
f

y2

U

x2

s2
f

y2

U

x2

s2
f

91

The Stateful-Random-Graph Model – cont

U in exhaustive search:

xi=si-1
si=si-1 + 1 mod N,

which goes over

all the preimages

of f in a single cycle

y1y0

s0 U

x1

s1
f

y2

U

x2

s2
f

y2

U

x2

s2
f

y2

U

x2

s2
f

92

The rigorously proven Coverage Theorem

(exact statement, with no hidden constants):

For any U with S hidden states,

with overwhelming probability over random f’s,

the coverage of any collection of M paths of any

length in the stateful random graph defined by U

is bounded from above by 2A, where

,)ln(SNSNMA=

93

Corollaries:

To cover most of the vertices of any stateful

random graph, you have to use a sufficiently large

number of hidden states, whose guessing

determines the minimal possible running time of

the online phase of the attack in any such scheme.

This lower bound is applicable to Hellman’s

scheme, to the Rainbow scheme, and to all their

known variations, and proves their optimality up

to logarithmic factors

94

• Many governments (including in Israel) plan to issue
new ID cards in the near future

• They are facing strong public opposition mainly due to
privacy concerns

• The five possible solutions:

Adding Privacy To Biometric Databases:

Using Random Graphs to Identify People

Biometric

ID card +

database

Biometric

ID card,

no DB

Smart ID

card, no

biometrics

Printed/

laminated

ID card

No

universal

ID card

95

The Planned Transition in Israel

Biometric

ID card +

database

Biometric

ID card,

no DB

Smart ID

card, no

biometrics

Printed/

laminated

ID card

No

universal

ID card

Biometric

ID card +

database

Biometric

ID card,

no DB

Smart ID

card, no

biometrics

Printed/

laminated

ID card

No

universal

ID card

96

The Planned Transition in Israel

Biometric

ID card +

database

Biometric

ID card,

no DB

Smart ID

card, no

biometrics

Printed/

laminated

ID card

No

universal

ID card

Biometric

ID card +

database

Biometric

ID card,

no DB

Smart ID

card, no

biometrics

Printed/

laminated

ID card

No

universal

ID card

97

The Planned Transition in Israel

Biometric

ID card +

database

Biometric

ID card,

no DB

Smart ID

card, no

biometrics

Printed/

laminated

ID card

No

universal

ID card

Biometric

ID card +

database

Biometric

ID card,

no DB

Smart ID

card, no

biometrics

Printed/

laminated

ID card

No

universal

ID card

preferred by authorities,

strongly opposed by public

98

The Planned Transition in Israel

Biometric

ID card +

database

Biometric

ID card,

no DB

Smart ID

card, no

biometrics

Printed/

laminated

ID card

No

universal

ID card

Biometric

ID card +

database

Biometric

ID card,

no DB

Smart ID

card, no

biometrics

Printed/

laminated

ID card

No

universal

ID card

99

The Planned Transition in Israel

Biometric

ID card +

database

Biometric

ID card,

no DB

Smart ID

card, no

biometrics

Printed/

laminated

ID card

No

universal

ID card

Biometric

ID card +

database

Biometric

ID card,

no DB

Smart ID

card, no

biometrics

Printed/

laminated

ID card

No

universal

ID card

rejected by authorities,

almost no public opposition

100

My Proposal: A Biometric Setbase

Biometric

ID card +

database

Biometric

ID card,

no DB

Smart ID

card, no

biometrics

Printed/

laminated

ID card

No

universal

ID card

Biometric

ID card +

database

Biometric

ID card,

no DB

Smart ID

card, no

biometrics

Printed/

laminated

ID card

No

universal

ID card

Biometric

ID card +

setbase

101

My Proposal: A Biometric Setbase

Biometric

ID card +

database

Biometric

ID card,

no DB

Smart ID

card, no

biometrics

Printed/

laminated

ID card

No

universal

ID card

Biometric

ID card +

database

Biometric

ID card,

no DB

Smart ID

card, no

biometrics

Printed/

laminated

ID card

No

universal

ID card

acceptable to authorities,

solves most privacy concerns
Biometric

ID card +

setbase

102

The Official Reasons for Creating a Biometric

Database in Israel:

• Major reason: Preventing double issuing of official
ID cards to criminals and crooks

• Minor reason: Identifying paperless bodies and
solving major crimes – in very rare cases

103

– Irreversibility: After the biometrics are collected for one purpose,
there will be mission creep

– Mistrust of government: Legal protections are insufficient to
prevent possible future misuse

– Insufficiency of Cryptographic Protection: Future governments can
force the disclosure of keys

– Potential dangers: identifying troublemakers, entrapping innocents,
leakage to outside entities

The Main Counterarguments of Privacy

Advocates:

104

A Standard Biometric Database:

identities biometrics

105

A Standard Biometric Database:

identities biometrics
a one-to-one correspondence

106

A Standard Biometric Database:

y

x

identities biometrics
a one-to-one correspondence

when someone

who is already

registered as Mr X

claims to be Mr Y,

he will be caught

via his biometrics

107

• The database should have:
– insufficient information to identify a person via his
biometrics as Mr X

– sufficient information to disprove a wrong claim that he is
Mr Y

• This separation should remain true even if:
– the law changes after the database is set up

– everyone colludes with the government

The Main Observation Behind Setbases:

108

Using Setbases Instead of Databases:

file cabinet with all

the N identities
file cabinet with

all the N biometrics

109

Using Setbases Instead of Databases:

file cabinet with

all the N identities
file cabinet with

the N biometrics

secretly and

randomly

partitioned into

drawers with

About sqrt(N)

files in each

110

Using Setbases Instead of Databases:

file cabinet with

all the identities
file cabinet with

all the biometrics

secretly and

randomly

partitioned into

drawers with

about 1,000 files

in each drawer

with secret

linking

between

the drawers,

but not

between files

111

Using Setbases Instead of Databases:

How to catch cheaters

y

v

z

x

k

identities biometrics

a given

biometrics

(originally

registered

as Mr x)

112

Using Setbases Instead of Databases:

How to catch cheaters

y

v

z

x

k

identities biometrics

a given

biometrics

(originally

registered

as Mr x)

new claimed

identity y is

very unlikely

to be in the

same secret

subset with

the original x

113

Using Setbases Instead of Databases:

How to Identify Paperless Bodies

y

v

z

x

k

identities biometrics

a given

biometrics

(originally

registered

as Mr x)

114

Using Setbases Instead of Databases:

How to Identify Paperless Bodies

y

v

z

x

k

identities biometrics

a given

biometrics

(originally

registered

as Mr x)

Police will

investigate all

the 1000

linked identities,

reduced to 100

By gender, age,

etc

115

Using Setbases Instead of Databases:

Even Fully Leaked Data Cannot Entrap

v

z

x

k

i

j
identities biometrics

someone with

full access to

the data wants

to entrap x by

planting his

fingerprints in a

crime scene

116

Using Setbases Instead of Databases:

Even Fully Leaked Data Cannot Entrap

v

z

x

k

i

j
identities biometrics

planting one

fingerprint

has probability

of 1/1000 to

succeed;

planting multiple

fingerprints

will raise alarm

someone with

full access to

the data wants

to entrap x by

planting his

fingerprints in a

crime scene

117

Real life Problems Are More Complicated:

Can We Eliminate People who Die or Emigrate?

y

v

z

x

k

identities biometrics

What are

his

Biometrics?Mr x had

just died

118

Real life Problems Are More Complicated:

How to Deal With Multiple Biometrics?

x

f

identities pictures

A known

picture

A known

fingerprint

p

fingerprints

119

Real life Problems Are More Complicated:

Multiple Biometrics Can Identify a Person

x

f

identities pictures

A known

picture

A known

fingerprint

p

fingerprints

120

Real life Problems Are More Complicated:

Correct Implementation of Hypergraph Setbases

x

f

identities pictures

A known

picture

A known

fingerprint

p

fingerprints

Note: new

biometrics can

be added later

to an existing

setbase

121

Real life Problems Are More Complicated:

The Advantages of Hypergraph Setbases

x

g

f

identities pictures

uncertain

picture

uncertain

fingerprint

q

p

fingerprints

122

Real life Problems Are More Complicated:

The Advantages of Hypergraph Setbases

x

g

f

identities pictures

uncertain

picture

uncertain

fingerprint

q

p

fingerprints

123

Real life Problems Are More Complicated:

The Dual Problem of Multiple Card Types

b

x

biometrics passports

A known

Passport

number

A known

ID card

number

p

ID cards

124

Real life Problems Are More Complicated:

The Dual Problem of Multiple Card Types

b

x

biometrics Passports

A known

passport

number

A known

ID card

number

p

ID cards

Note: number

of passports

can be much

smaller than

number of

ID cards

125

• Like any other privacy enhancing technique,
setbases are a compromise between the conflicting
demands for privacy and functionality

• Double issuing can be prevented at almost no
additional cost and with very high probability

• Individuals can be identified from their biometrics,
but only by a long, expensive and highly visible
police investigation, and can’t be easily entrapped

• This privacy protection cannot be eliminated by
changing the law or expropriating the crypto keys

Summary of Setbases:

126

Conclusion:

Random graphs are wonderful objects to study

Understanding their structure can lead to many

cryptographic and cryptanalytic optimizations,

as well as to new privacy enhancing techniques

In this talk I gave only a small sample of the

published and folklore results at the interface

between cryptography and random graph theory

127

