Two dimensional materials A new pathway for electronics and sensing

George Deligeorgis, PhD Researcher deligeo@physics.uoc.gr

Roadmap instead of an outline

2D material growth

2D material based electronics

2D materials for sensing

Exploring novel ideas

2D material availability and flavours

"exfoliation" (scotch tape)

Y.Cheng, and I. Jovanovic, Perdue Univ. http://www.physics.purdue.edu/quantum/Talks/ari_2009b.pd A.K. Geim, P. Kim, Sci. Am., April 2008, 90

J. Phys. Chem. B, 2004, 108 (52), pp 19912–19916

P.W. Sutter et. al., Nature Materials 7, 406 - 411 (2008)

11" επιστημονική διημερίδα ΙΤΕ, Ηράκλειο 2017

- $\bullet \ Liquid \ phase \ ex-foliation$
 - $\bullet Small \ size \ ex-foliated \ flakes \ in \ solutions$
 - All 2D materials
- CVD grown large area
 - Graphene and recently other 2D materials

s- CNT

www.2dsemiconductors.com

Material growth in FORTH – IESL

Commissioned Jan 2017

2D material growth

2D material based electronics

2D materials for sensing

Exploring novel ideas

Current transistor technology

Our society is based on availability of ever faster communications

1st FORTH graphene FET

S S G + 40 µm

Deligeorgis et al Appl. Phys. Lett. 96 103105 (2010)

11^η επιστημονική διημερίδα ΙΤΕ, Ηράκλειο 2017

Graphene FET DC modelling

Developed a model **correctly predicting ballistic** transport properties by extending the "top of the barrier" diffusion transport.

Model valid and **much simpler** than existing NEGF based computations.

RF graphene lumped element model

G.Vinzenzi et al S.S.El., vol. 76, pp. 8–12, Oct. 2012

Graphene FET current control

4GHz

10

11^η επιστημονική διημερίδα ΙΤΕ, Ηράκλειο 2017

Comparison to State of the art

Graphene antenna

M. Dragoman et al Appl. Phys. Lett. 106, 153101 (2015)

Roadmap: 3D integration of 2D devices

G. Deligeorgis et al Appl. Phys. Lett. 96 103105 (2010) G.Deligeorgis et al Appl. Phys. Lett. 101(1),013502 (2012) G.Vinzenzi et al S.S.El., vol. 76, pp. 8–12, (2012) M.Dragoman et al J. Appl. Phys. 112 (8), 084302 (2012) F.Coccetti et al IEEE MTT-S IMS (MTT) (2013) G.Vinzenzi et al IEEE IMS (2014) VS. Prudkovskiy et al Carbon Vol.109 p.221 Nov. 2016

European Commission

2D material growth

2D material based electronics

2D materials for sensing

Exploring novel ideas

Inkjet printed graphene oxide for sensing

Graphene RF LOVE sensor for → Relative humidity → Ethanol concentration Excellent linearity

Nikolaou et al. SPIE Microtechnologies 951716 (2015)

11" επιστημονική διημερίδα ΙΤΕ, Ηράκλειο 2017

Inkjet printed sensing

Sensitivity and repeatability

11^η επιστημονική διημερίδα ΙΤΕ, Ηράκλειο 2017

Self assembled graphene hydro-gels

11^η επιστημονική διημερίδα ΙΤΕ, Ηράκλειο 2017

Conclusions - Acknowledgements

Collaborators:

•

- F. Iacovella (Postdoctoral Fellow)
 - G. Kaklamani (Junior Researcher. Tissue engineering)
- N. Chatzarakis (M.Sc student, 2D growth) •
- K. Triantopoulos (ex M.Sc. student now in NEEL France)
- V. Prudkovskiy (ex Postdoctoral Fellow, now in CEA France)
- B. Gabritchidze (ex M.Sc. now Ph.D at Cornell & UoC)
 - A. Ziaei (THALES Research & Technology, France)
 - D. Gournis (Univ. of Ioannina, Graphene oxide material)
- D. Tzeranis (NTUA & IMBB, Mechanical testing) ٠
- G. Konstantinidis (IESL, Clean room support)

European Commission

2D materials for

- Electronics (High frequency, flexible)
- Sensing
- **Bio** applications