

Information System Support for Analytical Methods

Martin Doerr

Center for Cultural Informatics, Institute of Computer Science Foundation for Research and Technology - Hellas

Heraklion, October 18, 2017

ICS-FORTH October 14, 2017

Analytics & Information Requirements

Empirical science is based on observation.

Observation data cannot be understood without knowledge about the ways and circumstances of their creation.

Scientific analytical examinations are observations

Data Evaluation is based on observation records and hypotheses

Analytical examinations occur in:

medicine, environmental control, manufacturing control, geology, biodiversity, paleontology, art conservation, archaeology, forensics....where not?

Analytics & Information Requirements

Generally, scientific data cannot be understood without knowledge about the meaning of the data and the ways and circumstances of their creation

We need metadata ("paradata") to assess

- o meaning (view, experimental setup, instrument settings),
- relevance (measured things, their status, their conditions),
- o quality (calibration, tolerances, **errors**, "artifacts"),
- possibilities of Improvement and Reprocessing.

From generation to use, permanent storage, reuse (life-cycle)

➔ No standards yet!

Requirements

Data Acquisition: Reliable registration of the process and context conditions

- The experimental setup and environment (tools, light/activation sources, geometry, sources of noise/reflections etc.)
- Capture device type, identity (individual behavior!)
- Need a hierarchical model: Inherit metadata common to series of "shots"
- The identity of the measured or depicted *object*
 - *import identifiers, metadata of the object.*
 - identity of location/ spot

Requirements

Data Processing: Reliable registration of parameters

- Workflow logs, reliable identification of outputs with inputs
 - input files (URIs!)
 - output files (URIs!), formats, warning and error reports.
 - S/W identifiers and parameters, manual adjustments!
 - process types for reasoning
- Reliable linking with measured data

Data Use and Reuse: parts, wholes and annotation:

- Composition of final products from multiple trials, client/archival information packages
- Migration to other formats (compatibility and obsoletion)
- Authenticity, rights

LIBS-RAMAN-MULTISPECTRAL FLOW DIAGRAM

ΔΙΑΓΡΑΜΜΑ ΡΟΗΣ

Object Reception Report Description of object, client order and receipt

Condition Report

Object:	Oil painting
Theme:	Mythological
Artist:	Unknown-no signature
Painting Technique:	Oil painting on canvas with preparation
Dimensions:	Width: 64 cm Height: 76cm
Date:	ē.
Provenance:	Private collection (Ms Danae Leontaraki)
IESL Reference No.:	20120717_Leontaraki_1
Date of analysis:	17 th and 18 th of July, 2012

IESL-FORTH registration number: 20120717_Leontaraki_1

*

LIBS-RAMAN-MULTISPECTRAL ΔΙΑΓΡΑΜΜΑ ΡΟΗΣ

Optical Examination of Object Find examination spots, create a map of spots and areas

Macroscopic examination / Description of the preservation condition

Canvas,	The original broadly woven, plain weave linen canvas has been
tretcher and	composition-glue lined onto a similar weave linen canvas.
ning:	The canvas is attached with tacks to wooden stretcher which is
	in a good condition.
	The canvas is lined overall with what appears to be an aqueous
Ground layer	The paint has been applied over a fine ground that appears to be
	in good cohesion and adhesion to the lining canvas

in good cohesion and adhesion to the lining canvas. In certain areas the exposed ground layer has a rich red earth color.

Painting layer T

The paint layer is characteristic of an oil binding medium and appears in fairly good condition.

The painting suffered from extensive damages and paint losses and shows irregular structure. Previous restorers have re-lined the canvas and over-painted the losses to a rather poor standard. As a result several features of the painting have been changed, as for example the face of "Venus" at the middle of the composition.

Quite heavy age-cracking has occurred in the original paint; some of which is visually disturbing. In these areas a reddish ground layer has been exposed.

Cracks and looses

Irregular structure

Retouching

Points and areas on the painting, where LIBS and Raman analysis was conducted

MAP

Preparation

*

Calibration, surface cleaning, spot description, focussing and adjusting instruments

ΔΙΑΓΡΑΜΜΑ ΡΟΗΣ

*

LIBS-RAMAN: Εμφάνιση γράφου, εντοπισμός σημαντικών κορυφών και καταγραφή χαρακτηριστικών δεδομένων (π.χ. nm κορυφών) MULTISPECTRAL: Φωτογραφικές λήψεις σε διάφορα μήκη κύματος

ΔΙΑΓΡΑΜΜΑ ΡΟΗΣ

Post-processing MULTISPECTRAL: Image flattening, Registration, Spectral response

ΔΙΑΓΡΑΜΜΑ ΡΟΗΣ

Sample	LIBS	Raman	XRD	SEM-EDX (X-ray mapping)	Comment
KN01	See Table 6	See Table 6	Calcite, talc, riebeckite, muscovite, quartz, clinochlore	Calcite, talc, Mg-riebeckite, muscovite, quartz, clinochlore	Macroscopically the color is black but in polished section grey-blue
KN02	Al, Ba, Ca, Fe, Mg, Na, Si, Sr	Intense fluorescence at 890 nm, Egyptian blue	Riebeckite, calcite, talc, muscovite, quartz	Mg-riebeckite, calcite, talc, muscovite, quartz	~30-80 μm red layer over a ~200 μm layer of Mg-riebeckite and Egyptian blue (see Fig. 2)
KN03	Al, Ba, Ca, <i>Cu</i> , Fe, Mg, Na, Si, Sr	Intense fluorescence at 890 nm, Egyptian blue	Cuprorivaite, calcite, quartz, kaolinite	-	
KN04	Al, Ba, Ca, <i>Cu</i> , Fe, Mg, Na, Si, Sr	Intense fluorescence at 890 nm, Egyptian blue	Cuprorivaite, calcite, cuprite, talc, riebeckite, illite	-	
KN05	Al, Ba, Ca, <i>Cu</i> , Fe, Mg, Na, Si, Sr	Intense fluorescence at 890 nm, Egyptian blue	Cuprorivaite, calcite	-	
KN06	Al, Ba, Ca, Cu, Fe,	Intense fluorescence at	Cuprorivaite, calcite, talc,	Cuprorivaite, calcitetalc	~200 µm layer similar

Interpretation: Optical observation, identification of spectral lines, comparison with material properties etc., conclusions

	Nig, Na, Si, Si	890 min, Egyptian blue			
VD01	Al, Ba, Ca, Cu, Fe,	Intense fluorescence at	-	-	
	Mg, Na, Pb, Si, Sr	890 nm, Egyptian blue			
VD04	Al, Ba, Ca, Cu, Fe,	Intense fluorescence at	Cuprorivaite, calcite, quartz,	-	Cristobalite is relict or
	Mg, Na, Pb, Si, Sr	890 nm, Egyptian blue	cristobalite		residue from the
					Egyptian blue
					synthesis
VD00	AL D. C. C. F.	Internet Breener of the	Comparing its analytic super-		
V D08	Al, Ba, Ca, Cu, Fe,	Intense nuorescence at	Cupionvalie, calcile, quariz,		
	Mg, Na, Si, Sr	890 nm, Egyptian blue	hematite, dioptase		
VD09	Al, Ba, Ca, <i>Cu</i> , Fe,	Intense fluorescence at	Calcite, quartz, hematite, talc,	-	
	Mg, Na, Si, Sr	890 nm, Egyptian blue	aragonite		
G01	Al, Ba, Ca, Cu, Fe,	Calcite	-	-	
	Mg, Na, Pb, Si, Sr				
G04	Al, Ba, Ca, Fe, Mg,	_	Calcite, quartz, kaolinite,	_	
	Na, Si, Sr		hematite, glauconite		
G06	Al, Ba, Ca, Cu, Fe,	_	Calcite, quartz	_	
	Mg, Na, Si, Sr				
G07	Al. Ba. Ca. Fe. Mg.	Calcite	Calcite, quartz	_	

LIBS-RAMAN-MULTISPECTRAL ΔΙΑΓΡΑΜΜΑ ΡΟΗΣ

*

Report generation

Riddle: 10.000 methods => 10.000 different systems?

What are the best abstractions to simplify system design?

Experimental science:

- **Choose** a phenomenon C_i , ("colorant"), activation signal A
- Measure signal response S
- isolate ("clean"), vary, impact factors F_j, until signal becomes predictable.
- "predictable" means constant or formula.
- Formula requires parametrization of things & activation:
- Requires hypothesis of negligible factor N_k

$$\Rightarrow$$
 S = F(C_i, F_j, A, N_k)

Analytical science:

- Given some object, unknown phenomenon of known kind ("which colorant?")
- Select a measurement (and activation) method
- Measure signal response S
- Find the phenomena.

=>

- Make hypothesis of negligible factors N_k
- Determine known impact factors F_i
- Invert signal function for C_i

 $<C_i> = F^{-1}(S, F_j, A, N_k)....$

....in general impossible

An **analytical method** exists, if **F**⁻¹can be found!

Problem A, the reference knowledge:

- Document signal function $F(C_i, F_j, A, N_k)$
- Find inverse function
- Knowledge of F, impact factors F_j, negligible factors N_k, change: We learn, we need to learn !
- ⇒ Create a **Reference database**

Problem B, the description of the observation ("provenance"):

- Document for each observation $F(C_i, F_i, A, N_k)$
- **Completely**, even for unknown factors??
- So that quality of (old) diagnoses can be judged
- So that old diagnoses can be improved
- So that the reference base **can learn**!

Questions of Analytics

ICS-FORTH May 8, 2015

Good News, analytical methods are very similar in a sense!

We have investigated 10 methods:

DNA, Thermoluminescence C14 Isotope Analysis Dendrochronology LIBS for clay provenance, for colorant analysis Ground Penetrating RADAR Multispectral Imaging

Processes, Parameters & Error sources of Scientific Analysis

Proces	Paran	meters		Error Source	
1. Environment/ Context	Position	Phenomenal	W	rong position in environment:	
		Place	Po	pluted, not representative, not suited for	
	Surrounding substance	Dhurical Fastura		nalysis	
	known history	Filysical Teature	no	ot suited for analysis	
2. Object	adequacy of the kind				
	state of preservation/conditi	ion			
3. Sample taking	Position within object - Kind	of structural part (surface	e, W	rong position in object,	
	tooth, bone, core,)	Sample Taking			
	condition at place / position	where sample is taken	w	rong accuracy, essential property not	
		Samples	m	easured	
	Purity	Sumples			
4. Sample	Kind of method, agents used	l, time passed since samp	ole		
preparation for	taking (age of sample)	Design or Procedure			
measurement			lba	d quality/quantity of agents	
5. Measurement	method, kind of device, insta	ance of device,. Measure	ement		
	algorithm/software release,	parameters used, interac	tive	-	
6. Postprocessing	intervention	Design or Procedure			
	quality of measured signal				
7. Pattern for	format, resolution	Pattern for matching			
matching					
8. Compare with	method, degree of matching, estimation of errors from				
reference pattern	the previous steps	S Design or Procedure			
/ matching					

Idea for provenance documentation:

Meetings of scientists with objects, devices, data carriers...

"Feynman graphs..."

CRM: Information Exchange as Meetings

3D Model Creation as Meetings

Competitors

Competitors:

- INSPIRE –earth science oriented
- OBOE life science oriented
- SEEK ecology oriented
- Darwin Core biodiversity

Problems of competitors:

- Confuse observation process with observation record
- Confuse sample taking with observation
- Confuse finding with preparation
- No persistent sample identity
- Poor, inconsistent description of methods, environment and participants
- Poor *identity* of observed "thing"

FORTH-ISL provenance metadata ("CRMSci) are currently the most powerful provenance metadata.

To be developed:

General Theory of Reference databases, an idealisation/ learning process:

- Register ALL samples
- Find mean-value/deviation of individual phenomena ("one colorant"), decide protypicality of samples, individual variation on sample, variation between samples.
- Find parameters (time, provenance, heat, etc.) causing signal variation
- Find diagnostic power: distance of signals between phenomena
- Find combination behavior: Linear? Complex?
- Take each analysis as a new example, **REVISE** all above if necessary.

Conclusion

Even though each analytical method is a universe of theory and experience of its own,

They follow a generic process pattern, and a few fundamental ways how data types, evaluation sequences and error sources connect.

This can be used for effective, highly parametrizable information systems for monitoring, reporting and experience building of analytical methods.