Mathematical and Computational Modelling of Molecular Systems

Vagelis Harmandaris

Institute of Applied and Computational Mathematics (IACM/FORTH), Heraklion, Greece

11^η Επιστημονική Διημερίδα ITE MS: Materials and Energy Heraklion, 13/10/17

Motivation: Complex Fluids - Hybrid Materials

- ✓ Broad spectrum of systems, applications, length-time scales.
- **Systems**
 - > polymers

- biological macromolecules (cell membrane, DNA, lipids)
- ➤ colloids
- > hybrid polymer nanocomposite systems

□ <u>Applications</u>

- Nanotechnology (materials in nano-dimensions), biotechnology (drug release, ... etc)
- Clever-responsive Materials

- Carbon structures
- ➤Molecular Electronics

Time – Length Scales Involved in Complex Molecular Systems

Segmental relaxation: 10⁻⁹ - 10⁻¹² sec

Maximum relaxation time of a chain, τ_1 : ~ 1 sec (in T < T_m)

Polymer/solid interface characteristic relaxation times: ?

Hierarchical Multiscale Modeling of Complex Molecular Systems

Several simulation methods that describe different length and time scales
 [K. Johnston and VH, Soft Matter, 9, 6696 (2013)]

Great Challenge: Quantitative modeling of specific hybrid complex systems.

Need: Analytical and Computational tools for rigorous "bridging" different description-simulation levels.

Modeling of Molecular Systems: Atomistic Molecular Dynamics

Classical mechanics: solve classical equations of motion in phase space, Γ:=Γ(r, p).

$$\mathbf{r} \equiv (\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N)$$
$$\mathbf{p} \equiv (\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_N)$$

$$\frac{dr_i}{dt} = M^{-1}p_i$$
, $\frac{dp_i}{dt} = -\frac{\partial U(r)}{\partial r_i} = F_i$

MD method: Numerical solution of deterministic equations of motion

```
    □ Integration time step: dt ≈ 1fs (10<sup>-15</sup> sec)
    □ Quantum phenomena are neglected
    □ Time scales: few fs up to ≈ 1 µs (10<sup>-6</sup> sec)
```

Typical size (single run): ~ 10⁵ – 10⁶ atoms
 CPU needs (single run): ~ 10 – 1000 procs

Example: Polymer Nanocomposites

[P. Bačová, et al., Macromolecules, 48, 9024 (2015); A. Rissanou et al., Macromolecules, 60, 6273 (2017); A. Power, VH, to be submitted]

- Au NP's Brushes (Hairs):
- Polyethylene
- 53 chains
- Short Brushes: 20mers
- Long Brushes: 62mers
- σ = 0.67 chains/nm²

Functionalized (core/shell) Au NP:

- Wulff construction
- Diameter = 5.0 nm
- w/w % ~ 30

Example: Nanostructured Polymer/Graphene Systems

[A. Rissanou and VH, Soft Matter 10, 2876, (2014); Macromolecules 48, 2761 (2015)]

AN ANY ADDRESS OF A DESCRIPTION OF A DESCR A DESCRIPTION OF A DESCRIPTIONO

- All-atom model
- Verlet algorithm, dt = 1-2 fs
- ✤ Т=450-500 К.
- Short polymeric chains (10mer 20mer)
- Loading of graphene sheets: 1-3% wt

Confined Polymer Films – Spatial Heterogeneities

[A. Rissanou and VH, Macromolecules 48, 2761 (2015)]

Density profiles as a function of the distance from graphene layers

Density profiles are symmetrical with respect to the center of the film.

> All systems attain bulk density in the intermediate region between graphene layers.

Well-ordered layered structure of PE close to graphene.

Confined Polymer Films: Segmental Dynamics

[A. Rissanou and VH, Macromolecules 48, 2761 (2015); Soft Matter 10, 2876 (2014)]

Relaxation time decreases with the distance from the graphene layer.

Larger deviation from ideal Debye behavior close to the graphene layer.

Non-equilibrium Systems: Single Polymer Chain Adsorbed on Graphene

- Model: All-atom model (OPLS-AA) of PE chain adsorbed on graphene.
- Perfect 2D single-chain polymer crystal

Letter

pubs.acs.org/NanoLett

Dynamics and Structure of Monolayer Polymer Crystallites on Graphene

Max Gulde, **[†] Anastassia N. Rissanou, [‡] Vagelis Harmandaris, **^{‡,§} Marcus Müller, ^{||} Sascha Schäfer, [†] and Claus Ropers [†]

[†]4th Physical Institute - Solids and Nanostructures, University of Göttingen, 37077, Göttingen, Germany [‡]Institute of Applied and Computational Mathematics, Foundation for Research and Technology Hellas, 71110 Heraklion, Crete, Greece

[§]Department of Mathematics and Applied Mathematics, University of Crete, 71409, Heraklion, Crete, Greece Institute for Theoretical Physics, University of Göttingen, 37077, Göttingen, Germany

Single-Chain Polymer Crystal Adsorbed on Graphene

- **Atomistic view of melting process**
- Reversible process

- Formation of a single-chain polymer crystal (time scales ~ 100ns)
- Melting: Ultra-fast dynamics of the polymer crystal (~ 100 ps)
- Melting via a transient floating phase.

Materials for Applications in Energy: Star Polymers

- [P. Bačová, et al., to be submitted; Collaboration with Dr. E. Glynos IESL/FORTH]
- Model: Mikto-arm star polymers
- Atomistic polystyrene poly(ethylene oxide) (PS/PEO) model systems
- Different nano (hetero)-structures as a function of T, f, solvent

Modeling of Complex Systems: Atomistic Molecular Simulations

□ Atomistic molecular simulations (MD, MC) – The perfect experiment:

> Capable of quantitative predictions of the properties (structure, thermodynamics, mechanical, rheological, etc) of

Complex multi-phase materials.

Limits of Molecular Dynamics Atomistic Simulations (with usual computer power):

-- Length scales: few Å - O(10 nm) -- Time scales: few fs - O(1 μs) (10⁻¹⁵ – 10⁻⁶ sec)

-- **Systems size:** O(10⁵ – 10⁶ atoms)

Need:

Simulations at larger length – time scales.

> Application to molecular weights relevant to polymer processing.

Study more complicated molecular systems – materials.

Systematic Coarse-grained Models

[VH, et al. Macromolecules, 39, 6708 (2006); Physical Review Letters 110, 165701 (2013); V. Kalligiannaki et al, J. Chem. Phys. 143, 084105 (2015); J. Comp. Phys. 314, 355 (2016); A. Tsourtis et al. Entropy 19, 395 (2017)]

- Choice of the proper CG description.
- -- Microscopic (N particles)

$$X := \{X_1, X_2, ..., X_N\}$$

$$Z = \xi X$$

-- Mesoscopic (M "super particles")

-- Usually ξ is a linear operator

$$\mathbf{z}_i = \sum_{j=1}^N c_j \mathbf{x}_j$$
 $i = 1, 2, ..., M$

Coarse Grained Models: Effective Interaction Potential

□ Equations of motion in the CG scale become stochastic

> Langevin dynamics (through Markovian approximation):

z := {z₁, z₂, ..., z_M}

 $p := \{p_1, p_2, ..., p_M\}$

 $dz_i = M^{-1}p_i dt$

$$dp_i = -\frac{\partial U^{CG}(z)}{\partial z_i} - \gamma M^{-1} p_i dt + \sigma dW$$

 \checkmark $U^{CG}(z)$: CG Interaction potential

 \checkmark **y** : friction σ : diffusion

W: 3M-Brownian motion

$$\sigma\sigma^{tr} = 2\beta^{-1}\gamma$$

In principle U^{CG} is a function of all CG degrees of freedom in the system (free energy, potential of mean force U^{PMF}):

 $U^{CG}(z) = U^{PMF}(z)$

CG Hamiltonian – Renormalization Group Map:

$$U^{PMF}(z) = -rac{1}{eta} \log \int_{\Omega(z)} e^{-eta U(x)} dx, \ \Omega(z) = \{x \in \mathbb{R}^{3N} : \xi(x) = z\}$$

 U^{PMF}(z) is NOT possible to be calculated exactly. Various methods to be approximated: [V. Kalligiannaki et al, J. Chem. Phys. 143, 084105 (2015); J. Comp. Phys. 314, 355 (2016); Europ. Phys. J. Special Topics, 225, 1347 (2016); A. Tsourtis et al. Entropy 19, 395 (2017)]

Confined Polymers through Hierarchical modeling

[K. Johnston and VH, J. Phys. Chem. C, 115, 1407 (2011); Soft Matter (2012); Macromolecules, 46, 5741 (2013)]

Polystyrene/Au CG model systems

□ Molecular length: from 10mer up to 1000mer (MW=1000 – 100.000 gr/mol).

□ Simulated times: up to ~ 1ms.

Dynamics of Bulk Polymers

[VH and K. Kremer, Macromolecules 42, 791 (2009); Soft Matter 5, 3920 (2009)]

Dynamics of polymer – Self-diffusion coefficient

Crossover regime: From Rouse to reptation dynamics

-- Exp. Data: NMR [Sillescu et al. Makromol. Chem., 188, 2317 (1987)]

Acknowledgments

Dr. A. Rissanou

Dr. P. Bacova

Albert Power

- Dr. M. Gulde, Prof. M. Müller, Dr. S. Schäfer, Prof. C. Ropers (University of Goettingen)
- Dr. Evangelia Kalligiannaki [KAUST]
- Prof. D. Tsagkarogiannis
- [University of Sussex, UK]
- Prof. P. Plechac [University of Delaware, Newark, USA]
- Prof. M. Katsoulakis [University of Massachusetts, Amherst, USA]
- Research groups at IESL/FORTH and ICEHT/FORTH

Thank you for your Attention!

Archimedes Center for Modeling, Analysis & Computation University of Crete

Funding:

Goodyear ("Atoms-to-Tires: Virtual Materials Design" Program) 2017-2021 Aristeia II Excellence Grant [GSRT, Greece], 2014-15 Thales [GSRT, Greece], 2013-15 DFG [SPP 1369 "Interphases and Interfaces ", Germany], 2010-2013 Graphene Research Center, FORTH [Greece], 2013

mac

Acknowledgments

Dr. Evangelia Kalligiannaki [KAUST]

Prof. D. Tsagkarogiannis

[University of Sussex, UK]

Prof. P. Plechac [University of Delaware, Newark, USA]

Conclusions

□ Hierarchical systematic methods that involve coupling:

> quantum (DFT), microscopic (atomistic) and mesoscopic (coarse-grained) techniques

- Length scales: from ~ 1 Å (10⁻¹⁰ m) up to 100 nm (10⁻⁷ m)
- Time scales: from ~ 1 fs (10⁻¹⁵ sec) up to about 1 ms (10⁻³ sec)

Coarse-grained methods: Rigorous dimensionality reduction approaches

Equilibrium systems: several methods to approximate the many-body potential of mean force

□ Which method to approximate the CG PMF model is the "best" one?

- All methods (IBI, FM, RE) approximate theoretically the same PMF for a given functional form of the CG potential.
- Rather similar results for simple liquids
- > Numerical applications of specific complex systems are required

Open Questions – Computational Challenges

□ All above methods require "full" sampling of the reference system. What if we are not able to have such a sampling?

- Direct Boltzmann Inversion (DBI) based on isolated systems: Works well in many cases but neglects many-body terms [VH et al. Macromolecules 39, 6708 (2006)]
- Hierarchical cluster expansion approaches to involve many-body terms [A. Tsourtis et al. Entropy 19, 395 (2017)]

CG models for:

- Quantitative predictions of the dynamics, of CG complex systems
- For CG systems under non-equilibrium conditions
- Semi-empirical method of CG time mapping works well only for a few cases
- New methods are required Example: Algorithms based on path-wise tools

Modeling of Molecular Systems: Atomistic Molecular Dynamics

>Classical mechanics: solve classical equations of motion in phase space, Γ := Γ (r, p).

In microcanonical (NVE) ensemble:

$$\mathbf{r} \equiv (\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N)$$
$$\mathbf{p} \equiv (\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_N)$$

Liouville operator:

$$L = \{\mathbf{K}, H\} = \sum_{i=1}^{N} \left[\mathbf{r}_{i} \frac{\partial}{\partial \mathbf{r}_{i}} + \mathbf{F}_{i} \frac{\partial}{\partial \mathbf{p}_{i}} \right]$$

The evolution of system from time *t*=0 to time *t* is given by :

$$\Gamma(t) = \exp(iLt)\Gamma(0)$$

$$\dot{\mathbf{r}}_{i} = \frac{\mathbf{p}_{i}}{m_{i}} \quad \dot{\mathbf{p}}_{i} = -\frac{\partial U}{\partial \mathbf{r}_{i}} = \mathbf{F}_{i}$$
Hamiltonian (conserved quantity):
$$H_{NVE} = K + U(\mathbf{r}) = \sum_{i} \frac{\mathbf{p}_{i}^{2}}{2m_{i}} + U(\mathbf{r})$$

MD method: Numerical solution of equations of motion.

CG Projection operator: Mori – Zwanzig Formalism

□ Equations of motion in the CG scale become stochastic

z := {z₁, z₂, ..., z_M}

 $p := \{p_1, p_2, ..., p_M\}$

Langevin dynamics (through Markovian approximation):

 $dz_i = M^{-1} p_i dt$

$$dp_i = -\frac{\partial U^{CG}(z)}{\partial z_i} - \gamma M^{-1} p_i dt + \sigma dW$$

- $\checkmark U^{CG}(z)$: CG Interaction potential
- ✓ γ : friction σ: diffusion -- fluctuation-dissipation relation: $σσ^{tr} = 2β^{-1}γ$
- ✓ W: 3M-dimensional Brownian motion (white noise)

Main challenges – Computation of:

- 1) CG interaction potential, $U^{CG}(z)$
- 2) CG friction, γ

Effective CG Interaction Potential: Equilibrium Systems

□ In principle *U^{CG}* is a function of all CG degrees of freedom in the system and of temperature (free energy, potential of mean force *U^{PMF}*):

$$U^{CG}(z) = U^{PMF}(z)$$

 $r_{ij} = |z_i - z_j|$

CG Hamiltonian – Renormalization Group Map:

$$U^{PMF}(z) = -rac{1}{eta} \log \int_{\Omega(z)} e^{-eta U(x)} dx, \ \Omega(z) = \{x \in \mathbb{R}^{3N} : \xi(x) = z\}$$

Integral is over all atomistic configurations that correspond to a specific CG (3Mdimensional one

 \Box $U^{PMF}(z)$ is NOT possible to be calculated exactly. Typical approximation:

$$U^{PMF}(z) = \sum_{i < j} W_2(r_{ij}) + \sum_{i < j < k} W_3(r_{ij}, r_{ik}, r_{jk}) \\ + \sum_{i < j < k < l} W_4(r_{ij}, r_{ik}, r_{il}, r_{jk}, r_{jl}, r_{kl}) + \dots$$

Equilibrium CG Models: Hybrid Polymer/Solid Interfaces

Development of PMF between CG beads through DBI and IBI methods

Remember: CG superatom / Au interaction potential includes entropic effects.

Several issues can be considered:

- Position of CG beads
- ➤ Tacticity
- Effect of chain ends

Polystyrene/Au Systems: Width of the Interface

[K. Johnston and VH, Macromolecules 46, 5741 (2013); Soft Matter 9, 6696 (2013)]

Dependence of the interphase width on chain length using density, bond order, and conformation tensor profiles

> Dashed lines are fits to the data of the form: $W \sim N^{1/2}$

Non-equilibrium Systems: Single-chain PE Adsorbed on Graphene

- Model: All-atom model (OPLS-AA) of PE chain adsorbed on graphene.
- Perfect 2D single-chain polymer crystal

NANOLETTERS

Letter

pubs.acs.org/NanoLett

Dynamics and Structure of Monolayer Polymer Crystallites on Graphene

Max Gulde, **[†] Anastassia N. Rissanou,[‡] Vagelis Harmandaris, **^{‡,§} Marcus Müller,^{||} Sascha Schäfer,[†] and Claus Ropers[†]

[†]4th Physical Institute - Solids and Nanostructures, University of Göttingen, 37077, Göttingen, Germany [‡]Institute of Applied and Computational Mathematics, Foundation for Research and Technology Hellas, 71110 Heraklion, Crete, Greece

[§]Department of Mathematics and Applied Mathematics, University of Crete, 71409, Heraklion, Crete, Greece Institute for Theoretical Physics, University of Göttingen, 37077, Göttingen, Germany

Single-chain Polymer Crystal Adsorbed on Graphene

Polymer configuration at thermal equilibrium

Ultrafast Melting of Single-chain PE Crystal Adsorbed on Graphene

□ Heated Graphene (T=650K): Temporal evolution of polymer conformation

Polymer (PS) confined between Graphene: Local Dynamics

[P. Bacova, A. Rissanou, and VH, Macromolecules, 2015, 48, 9024] Regions of different mobility

Absolute segmental displacement d at time t = 1 ns

⇒ effect of the surface on the segmental dynamics in its vicinity
 ⇒ effect of the interaction of COOH-edges with polymer matrix

Non-Equilibrium Polymer Melts

[C. Baig and VH, Macromolecules, 43, 3156 (2010)]

> Non-equilibrium molecular dynamics (NEMD): modeling of systems out of equilibrium - flowing conditions.

NEMD: Equations of motion in canonical (NVT) ensemble (Nose-Hoover)

C. Baig et al., J. Chem. Phys., 122, 11403, 2005]

$$\dot{\mathbf{q}}_{i} = \mathbf{p}_{i} \qquad \dot{\mathbf{p}}_{i} = \mathbf{F}_{i} - \mathbf{p}_{i} \cdot \nabla \mathbf{u} - m_{i} \mathbf{q}_{i} \cdot \nabla \mathbf{u} \cdot \nabla \mathbf{u} - \frac{p_{\zeta}}{Q} \mathbf{p}_{i}$$

$$\dot{\zeta}_{i} = \frac{p_{\zeta}}{Q} \qquad \dot{\mathbf{p}}_{\zeta} = \sum_{i} \frac{\mathbf{p}_{i}^{2}}{m_{i}} - 3Nk_{B}T$$
Lees-Edwards Boundary Conditions
$$\overset{j \perp \Delta t}{\overset{j \perp}{\partial y}} \qquad \overset{j \perp \Delta$$

CG Polymer Simulations: Non-Equilibrium Systems

CG NEMD - Remember: CG interaction potentials are calculated as potential of mean force (they include entropy). In principle $U^{CG}(x,T)$ should be obtained at each state point, at each flow field.

Critical question: How well polymer systems under non-equilibrium (flowing) conditions can be described by CG models developed at equilibrium?

Method:

[C. Baig and V. Harmandaris, Macromolecules, 43, 3156 (2010)]

Use of existing equilibrium CG polystyrene (PS) model.

> Direct comparison between atomistic and CG NEMD simulations for various flow fields. Strength of flow (Weissenberg number, $W_i = 0.3 - 200$) $Wi \equiv \lambda \dot{\gamma}$

Study short atactic PS melts (M=2kDa, 20 monomers) by both atomistic and CG NEMD simulations.

> Properties as a function of strength of flow (Weissenberg number) $Wi \equiv \lambda \dot{\gamma}$

> Atomistic c_{xx} : asymptotic behavior at high W_i because of (a) finite chain extensibility, (b) chain rotation during shear flow.

> CG c_{xx}: allows for larger maximum chain extension at high W_i because of the softer interaction potentials.

$ightarrow c_{yy}$, c_{zz} : excellent agreement between atomistic and CG configurations.

CG Non-Equilibrium Polymers: Dynamics

- Is the time mapping factor similar for different flow fields?
- [C. Baig and VH, Macromolecules, 43, 3156 (2010)] Translational motion
- > Purely convective contributions from the applied strain rate are excluded.

Very good qualitative agreement between atomistic and CG (raw) data at low and intermediate flow fields. > Time mapping parameter as a function of the strength of flow.

Strong flow fields: smaller time mapping parameter I effective CG bead friction decreases less than the atomistic one.

Reason: CG chains become more deformed than the atomistic ones.