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 Broad spectrum of systems, applications, length-time scales.

 Systems

 polymers

Applications

 Nanotechnology (materials in nano-dimensions), biotechnology (drug release, … etc)

 Clever-responsive Materials
 Carbon structures

Molecular Electronics

Motivation: Complex Fluids  - Hybrid Materials

 biological macromolecules (cell membrane, DNA, lipids)

 colloids

 hybrid polymer nanocomposite systems



 Bond vibrations: ~ 10-15 sec 

 Segmental relaxation: 10-9 - 10-12 sec

Maximum relaxation time of a chain, τ1: ~ 1 sec (in Τ < Τm
)

 Angle rotations: ~ 10-13 sec

 Dihedral rotations: ~ 10-11 sec

Time – Length Scales Involved in Complex Molecular Systems

 Polymer/solid interface characteristic relaxation times: ?



Α) description in quantum
level

Β) description in microscopic 
(atomistic) level

C) description in mesoscopic 
(coarse-grained) level

D) description in macroscopic -
continuum level

 Great Challenge: Quantitative modeling of specific hybrid complex systems.

 Need: Analytical and Computational tools for rigorous “bridging” different 
description-simulation levels.

 Several simulation methods that describe different length and time scales
[K. Johnston and VH, Soft Matter, 9, 6696 (2013)]

Hierarchical Multiscale Modeling of Complex Molecular Systems



 Classical mechanics: solve classical equations of motion in phase space, Γ:=Γ(r, p). 

Modeling of Molecular Systems: Atomistic Molecular Dynamics
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 MD method: Numerical solution of  deterministic equations of motion 

 Integration time step: dt ≈ 1fs (10-15 sec)

 Quantum phenomena are neglected

 Time scales: few fs up to  ≈ 1 μs (10-6 sec)

 Typical size (single run): ~ 105 – 106 atoms

 CPU needs (single run):  ~ 10 – 1000 procs
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Au NP’s Brushes (Hairs):

• Polyethylene

• 53 chains

• Short Brushes: 20mers

• Long Brushes: 62mers

• σ = 0.67 chains/nm2

Example: Polymer Nanocomposites

Functionalized (core/shell) Au NP:

• Wulff construction

• Diameter = 5.0 nm

• w/w % ~ 30

[P. Bačová, et al., Macromolecules, 48, 9024 (2015); A. Rissanou et al., Macromolecules, 60, 6273 
(2017); A. Power, VH, to be submitted]
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PE
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Example: Nanostructured Polymer/Graphene Systems

[A. Rissanou and VH, Soft Matter 10, 2876, (2014); Macromolecules 48, 2761 (2015)]

 All-atom model

 Verlet algorithm, dt = 1-2 fs

 T=450-500 K.

 Short polymeric chains (10mer – 20mer)

 Loading of graphene sheets: 1-3% wt

Polyethylene Oxide



Confined Polymer Films – Spatial Heterogeneities

 Density profiles are symmetrical with respect to the center of the film.

 All systems attain bulk density in the intermediate region between graphene layers. 

 Well-ordered layered structure of PE close to graphene.
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 Density profiles as a function of the distance from graphene layers

[A. Rissanou and VH, Macromolecules 48, 2761 (2015)]
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 Relaxation time decreases with the distance from the graphene layer.

 Larger deviation from ideal Debye behavior close to the graphene layer.

Confined Polymer Films: Segmental Dynamics

r

[A. Rissanou and VH, Macromolecules 48, 2761 (2015); Soft Matter 10, 2876 (2014)]
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 Crystallization process:

 Model: All-atom model (OPLS-AA) of PE 
chain adsorbed on graphene. 

 Perfect 2D single-chain polymer crystal 

Non-equilibrium Systems: Single Polymer Chain Adsorbed on Graphene 



 Atomistic view of melting process

 Reversible process

 Formation of a single-chain polymer 
crystal (time scales ~ 100ns)

 Melting: Ultra-fast dynamics of the 
polymer crystal ( ~ 100 ps)

 Melting via a transient floating phase.

Single-Chain Polymer Crystal Adsorbed on Graphene 



 Model: Mikto-arm star polymers

 Atomistic polystyrene - poly(ethylene oxide) (PS/PEO) model systems 

 Different nano (hetero)-structures as a function of T, f, solvent 

Materials for Applications in Energy: Star Polymers

[P. Bačová,  et al., to be submitted; Collaboration with Dr. E. Glynos IESL/FORTH]

 Single-molecule PEO/PS star  PEO/PS star in PEO solvent



 Atomistic molecular simulations (MD, MC)  – The perfect experiment:
 Capable of quantitative predictions of the properties (structure, thermodynamics, 
mechanical, rheological, etc) of 
 Complex multi-phase materials. 

Need:

 Simulations at larger length – time scales.

 Application to molecular weights relevant to polymer processing.

 Study more complicated molecular systems – materials. 

 Limits of Molecular Dynamics Atomistic Simulations (with usual computer power):

-- Length scales: few Å - (10 nm) -- Time scales: few fs - (1 μs)  (10-15 – 10-6 sec)

-- Systems size: (105 – 106 atoms)

Modeling of Complex Systems: Atomistic Molecular Simulations



Choice of the proper CG description.

-- Microscopic (N particles) -- Mesoscopic (M “super particles”) 

-- Usually ξ is a linear operator

[VH, et al. Macromolecules, 39, 6708 (2006); Physical Review Letters 110, 165701 (2013); V. Kalligiannaki
et al, J. Chem. Phys. 143, 084105 (2015); J. Comp. Phys. 314, 355 (2016); A. Tsourtis et al. Entropy 19, 395 
(2017)]

Systematic Coarse-grained Models

X := {x1, x2, …, xN} Z := {z1, z2, …, zM} 

𝒛𝑖 = σ𝑗=1
𝑁 𝑐𝑗𝒙𝑗 𝑖 = 1, 2, … ,𝑀

𝒁 = 𝜉𝑿



Coarse Grained Models: Effective Interaction Potential

 Equations of motion in the CG scale become stochastic

 Langevin dynamics (through Markovian approximation):

𝑑𝑧𝑖 = 𝑀−1𝑝𝑖dt

𝑑𝑝𝑖 = −
𝜕𝑈𝐶𝐺 𝑧

𝜕𝑧𝑖
− 𝛾𝑀−1𝑝𝑖𝑑𝑡 + 𝜎𝑑𝑊

z := {z1, z2, …, zM}

p := {p1, p2, …, pM}

 𝑼𝑪𝑮 𝒛 : CG Interaction potential

 γ : friction σ: diffusion

 W: 3M-Brownian motion

𝜎𝜎𝑡𝑟 = 2𝛽−1𝛾

 In principle UCG is a function of all CG degrees of freedom in the 
system (free energy, potential of mean force UPMF):

 CG Hamiltonian – Renormalization Group Map:

𝑼𝑪𝑮 𝒛 = 𝑼𝑷𝑴𝑭 𝒛

 𝑼𝑷𝑴𝑭 𝒛 is NOT possible to be calculated exactly. Various methods to be approximated: 
[V. Kalligiannaki et al, J. Chem. Phys. 143, 084105 (2015); J. Comp. Phys. 314, 355 (2016); Europ. 
Phys. J. Special Topics, 225, 1347 (2016); A. Tsourtis et al. Entropy 19, 395 (2017)] 



Polystyrene/Au CG model systems

[K. Johnston and VH, J. Phys. Chem. C, 115, 1407 (2011); Soft Matter (2012); Macromolecules, 46, 
5741 (2013)]

Confined Polymers through Hierarchical modeling

Molecular length: from 10mer up to 1000mer (MW=1000 – 100.000 gr/mol).

 Simulated times: up to ~ 1ms. 



Dynamics of Bulk Polymers

 Dynamics of polymer – Self-diffusion coefficient 
 Crossover regime: From Rouse to reptation dynamics

-- Exp. Data: NMR [Sillescu et al. Makromol. Chem., 188, 2317 (1987)]

 Systems up to 100.000gr/mol

 Theoretical predictions

-- Rouse: D ~ M-1

-- Reptation: D ~ M-2

Crossover region: -- CG MD: Me ~ 28.000-33.000 gr/mol
-- Exp.:  Me ~ 30.0000-35.000 gr/mol

[VH and K. Kremer, Macromolecules 42, 791 (2009); Soft Matter 5, 3920 (2009)]
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 Equilibrium systems: several methods to approximate the many-body potential of mean 
force

Conclusions

 Length scales: from  ~ 1 Å (10-10 m) up to 100 nm (10-7 m) 

 Time scales: from ~ 1 fs (10-15 sec) up to about 1 ms (10-3 sec) 

 Hierarchical systematic methods that involve coupling:

 quantum (DFT), microscopic (atomistic) and mesoscopic (coarse-grained) techniques 

 Coarse-grained methods: Rigorous dimensionality reduction approaches

Which method to approximate the CG PMF model is the “best” one? 

 All methods (IBI, FM, RE) approximate theoretically the same PMF for a given 
functional form of the CG potential.

 Rather similar results for simple liquids

 Numerical applications of specific complex systems are required



 All above methods require “full” sampling of the reference system. What if 
we are not able to have such a sampling?

 Direct Boltzmann Inversion (DBI) based on isolated systems: Works well 
in many cases but neglects many-body terms [VH et al. Macromolecules 
39, 6708 (2006)]  

 Hierarchical cluster expansion approaches to involve many-body terms 
[A. Tsourtis et al. Entropy 19, 395 (2017)]

Open Questions – Computational Challenges

 CG models for: 

 Quantitative predictions of the dynamics, of CG complex systems

 For CG systems under non-equilibrium conditions

 Semi-empirical method of CG time mapping works well only for a few cases

 New methods are required – Example: Algorithms based on path-wise tools 



Classical mechanics: solve classical equations of motion in phase space, Γ:=Γ(r, p). 

 In microcanonical (NVE) ensemble:

Liouville operator:

The evolution of system from time t=0 to time t is given by :  ( ) exp (0)t iLt  
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Modeling of Molecular Systems: Atomistic Molecular Dynamics
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 MD method: Numerical solution of equations of motion. 



CG Projection operator: Mori – Zwanzig Formalism

 Equations of motion in the CG scale become stochastic

 Langevin dynamics (through Markovian approximation):

𝑑𝑧𝑖 = 𝑀−1𝑝𝑖dt

𝑑𝑝𝑖 = −
𝜕𝑈𝐶𝐺 𝑧

𝜕𝑧𝑖
− 𝛾𝑀−1𝑝𝑖𝑑𝑡 + 𝜎𝑑𝑊

z := {z1, z2, …, zM}

p := {p1, p2, …, pM}

 𝑼𝑪𝑮 𝒛 : CG Interaction potential

 γ : friction σ: diffusion -- fluctuation-dissipation relation:

 W: 3M-dimensional Brownian motion (white noise) 

Main challenges – Computation of: 

1) CG interaction potential, 𝑼𝑪𝑮 𝒛

2) CG friction, γ

𝜎𝜎𝑡𝑟 = 2𝛽−1𝛾



Effective CG Interaction Potential: Equilibrium Systems

 In principle UCG is a function of all CG degrees of freedom in the system and of 
temperature (free energy, potential of mean force UPMF):

 𝑼𝑷𝑴𝑭 𝒛 is NOT possible to be calculated exactly. Typical approximation: 

 CG Hamiltonian – Renormalization Group Map:

𝑼𝑪𝑮 𝒛 = 𝑼𝑷𝑴𝑭 𝒛

 Integral is over all atomistic configurations that correspond to a specific CG (3M-
dimensional one



Equilibrium CG Models: Hybrid Polymer/Solid Interfaces

 Development of PMF between CG beads through DBI and IBI methods

 Remember: CG superatom / Au interaction potential includes entropic effects. 

 Several issues can be considered:

 Position of CG beads

 Tacticity

 Effect of chain ends



 Dependence of the interphase width on chain length using density, bond order, and 
conformation tensor profiles

Polystyrene/Au Systems: Width of the Interface

 Dashed lines are fits to the data of the form: W ~ N1/2

[K. Johnston and VH, Macromolecules 46, 5741 (2013); Soft Matter 9, 6696 (2013)]



 Crystallization process:

 Model: All-atom model (OPLS-AA) of PE 
chain adsorbed on graphene. 

 Perfect 2D single-chain polymer crystal 

Non-equilibrium Systems: Single-chain PE Adsorbed on Graphene 



 Polymer configuration at thermal equilibrium

Single-chain Polymer Crystal Adsorbed on Graphene 



 Heated Graphene (T=650K): Temporal evolution of polymer conformation

Ultrafast Melting of Single-chain PE Crystal Adsorbed on Graphene 



Polymer (PS) confined between Graphene: Local Dynamics
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[A. Rissanou and VH, Soft Matter 10, 2876, (2014)]



RG / PEO Nanocomposites: Dynamical heterogeneities

[P. Bacova, A. Rissanou, and VH, Macromolecules, 2015, 48, 9024]



 Non-equilibrium molecular dynamics (NEMD): modeling of systems out of 
equilibrium - flowing conditions.
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 NEMD: Equations of motion in canonical (NVT) ensemble (Nose-Hoover)

C. Baig et al., J. Chem. Phys., 122, 11403, 2005]

simple shear flow

Lees-Edwards Boundary Conditions
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Non-Equilibrium Polymer Melts

[C. Baig and VH, Macromolecules, 43, 3156 (2010)]



CG Polymer Simulations: Non-Equilibrium Systems

 CG NEMD - Remember: CG interaction potentials are calculated as potential of mean 
force (they include entropy). In principle UCG(x,T) should be obtained at each state point, at 
each flow field. 

 Critical question: How well polymer systems under non-equilibrium (flowing) 
conditions can be described by CG models developed at equilibrium?

(,) ln,,         ( ,,)CG CG CGCGCG

BUTkTPT  x x xr

Use of existing equilibrium CG polystyrene (PS) model.

 Direct comparison between atomistic and CG NEMD simulations for various flow 
fields. Strength of flow (Weissenberg number, Wi = 0.3 - 200)

Wi 

 Study short atactic PS melts (M=2kDa, 20 monomers) by both atomistic and CG NEMD 
simulations.

Method:

[C. Baig and V. Harmandaris, Macromolecules, 43, 3156 (2010)]



CG Non-Equilibrium Polymers: Conformations
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Wi  Properties as a function of strength of flow (Weissenberg number)

 Conformation tensor 

 Atomistic cxx: asymptotic behavior at high Wi because of (a) finite chain extensibility, (b) 
chain rotation during shear flow.

 CG cxx: allows for larger maximum chain extension at high Wi because of the softer 
interaction potentials.



CG Non-Equilibrium Polymers: Conformation Tensor

 cyy, czz: excellent agreement between atomistic and CG configurations.



CG Non-Equilibrium Polymers: Dynamics

Translational motion 
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 Is the time mapping factor similar for different flow fields?

[C. Baig and VH, Macromolecules, 43, 3156 (2010)]

 Very good qualitative agreement between atomistic and CG (raw) data at low and 
intermediate flow fields.

 Purely convective contributions from the applied strain rate are excluded.



CG Non-Equilibrium Polymers: Dynamics

 Time mapping parameter as a function of the strength of flow.

 Strong flow fields: smaller time mapping parameter effective CG bead friction 
decreases less  than the atomistic one.

Reason: CG chains become more deformed than the atomistic ones.


