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Continuum Mechanics
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Continuum Mechanics

mathematical modeling of forces/deformations
in deformable solids
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Cell Biology
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Fig. 1 Tissue culture cell spreading or

rubber. The traction by which the cells xpud.dpaunhm

Fibroblasts cause wrinkling of 2D silicone substrate
Harris, Stopak, Wild 1981
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(e)
Moving Fish Epidermal Keratocytes

cause wrinkling of 2D silicone substrate
Burton, Park , Taylor, 1999
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4 Two centre effects form in collagen gels even when explants are separated by a distance spanning over 1.5 cm. Collagen fibres become
Scale bar, 1 mm.

aligned into long axially oriented tracts interconnecting two centres of traction. Heart explants from 8-day chick embryos after 96 h in culture.

Explants induce densification bands in 3D fibrin extracellular matrix
Harris, Stopak, Wild 1981
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Fibroblasts exert “huge” forces onto their surroundings
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Fibroblasts exert “huge” forces onto their surroundings

WHY?
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mechanosensing
cells sense forces/stresses/deformations

54



mechanosensing
cells sense forces/stresses/deformations

tensotaxis
cells protrude/migrate toward regions of higher tension
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mechanosensing
cells sense forces/stresses/deformations

tensotaxis
cells protrude/migrate toward regions of higher tension

durotaxis
cells protrude/migrate toward regions of higher stiffness
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What does the ECM look like?

Network of collagen/fibrin fibers
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The Role of Focal Adhesions

. ) ECM ligand
Adhesion proteins

Other elements

Actin filaments

Extra-Cellular Matrix (ECM)
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The Role of Focal Adhesions

. ) ECM ligand
Adhesion proteins

Other elements

Actin filaments
Extra-Cellular Matrix (ECM)

Adhesions allow the cell to exert traction on the ECM
Adhesions act as force/ stress/ deformation detectors.

Mechanosensing is active!!
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Fibroblasts Use Stress, But WHY?
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Fibroblasts Use Stress, But WHY?

To see

and be seen

and to change things around them

i.e.

To detect and approach each other by spreading/protruding

To remodel the matrix around them (possibly for tissue
morphogenesis Stopak-Harris, 1982)
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Notbohm-Ravichandran-Lesman-Tirrell 2013
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Notbohm-Ravichandran-Lesman-Tirrell 2013

Cells contract and tethers form in the ECM joining them.
Tethers (white) are regions of high ECM density
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Later, cells grow appendages along the tethers
towards each other.
. cell actin.
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Claim:
This behavior relies on a special nonlinearity of the ECM'’s
mechanical behavior
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Claim:
This behavior relies on a special (instability) of the ECM’s
mechanical behavior

this tethering behavior does not occur in homogeneous linear
elastic ECM (e.g. hydrogels)
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Microbuckling

Individual fibers will buckle under compression
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Microbuckling

Individual fibers will buckle under compression

stiffer in tesnion than in compression (rubber band)
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A Nonlinear Constitutive Law for Large Deformations
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A Nonlinear Constitutive Law for Large Deformations

Scale bar, 1 mm.

Harris-Stopak 1981

4 Two centre effects form in collagen gels even when explants are separated by a distance spanning over 1.5 cm, Collagen fibres become
aligned into long axially oriented tracts interconnecting two centres of traction. Heart explants from 8-day chick embryos after 96 h in culture.
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A Nonlinear Constitutive Law for Large Deformations

Scale bar, 1 mm.

Harris-Stopak 1981

4 Two centre effects form in collagen gels even when explants are separated by a distance spanning over 1.5 cm, Collagen fibres become
aligned into long axially oriented tracts interconnecting two centres of traction. Heart explants from 8-day chick embryos after 96 h in culture.

Macroscopic tether (1.5cm) between contracting (multi-cell)
explants (2-3mm) in collagen fibrous ECM
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A Nonlinear Constitutive Law for Large Deformations

Fig.4 Two centre effects form in collagen gels even when explants are separated by a distance spanning over 1.5 cm. Collagen fibres become
aligned into long axially oriented tracts interconnecting two centres of traction. Heart explants from 8-day chick embryos after 96 h in culture.
Scale bar, 1 mm.

Harris-Stopak 1981

Macroscopic tether (1.5cm) between contracting (multi-cell)
explants (2-3mm) in collagen fibrous ECM

Hypothesis: This can be explained by microbuckling.
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Elastic Strain Energy Function

Start with a single fiber with force stretch relation F()) that is
weaker in compression than tension and energy
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Elastic Strain Energy Function
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weaker in compression than tension and energy
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Elastic Strain Energy Function

Start with a single fiber with force stretch relation F()) that is
weaker in compression than tension and energy

Suppose ECM (2D) has uniform angular distribution of fibers

N 1 2r _ /
W()\l,)\g) = 27‘(/ w <v/(/\1C050)2 + (/\25f179)2> do
0
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Elastic Strain Energy Function
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Elastic Strain Energy Function
Explicitly determined

W(F), F=Vu

Elastic Deformation Energy /unit volume, function of deformation
gradient matrix F (strain)
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Interesting Properties of W

Uniaxial compression
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Interesting Properties of W

Uniaxial compression
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Nonmonotone uniaxial compression:
densification (compressive) phase transition,
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Interesting Properties of W

27 /54



Interesting Properties of W

W is a multi-well isotropic strain energy

27 /54



Interesting Properties of W

W is a multi-well isotropic strain energy

Level curves of W(A1, \2)

27 /54



Interesting Properties of W

W is a multi-well isotropic strain energy

Level curves of W(A1, \2)

Two wells : two phases (stable states) because of microbuckling
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Interesting Properties of W

W is a multi-well isotropic strain energy

Level curves of W(A1, \2)

Two wells : two phases (stable states) because of microbuckling
Instabilities, Discontinuities, Interfaces...
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Elastic Energy of the ECM

» Model ECM as elastic body with holes (cells/explants)
» Strain Energy Function W.
» Elastic Energy of the ECM

Elu] = /Q W(Vu)dV
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Elastic Energy of the ECM

» Model ECM as elastic body with holes (cells/explants)
» Strain Energy Function W.
» Elastic Energy of the ECM

Elu] = /Q W(Vu)dV

Minimize Energy
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Cell Model

Cells are the holes. They contract: they apply centripetal forces
proportional to distance from their center.
Explants: same as cells but at a much bigger scale.
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Typical Numerical Results (Finite Element Computation)
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Typical Numerical Results (Finite Element Computation)

4 Two centre ffects form in collagen gels éven when explantsare separated by a istance spanning over 1 1.5 cm. Collagen fibres become

Fig.
aligned into long axially oriented traction. 96 hin culture,
Scale bar, | mm.
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Typical Numerical Results (Finite Element Computation)

Stopak-Harris 1981
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Mesh Dependence
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Mesh Dependence
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Mesh Dependence
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Discontinuities, Oscillations
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Mesh Dependence

01

Discontinuities, Oscillationg
Stopak-Harris 1981
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Higher Gradients

.. added to the energy to limit gradient oscillations. Related to
discreteness, bending stiffness of the fibers and “rotational
springs”' at network nodes.

O[u] = E[u] + C[u] +Z/vavaZ
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(b) er > 0.
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(b) €1 > 0. (c) €2 > €.
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Length Scale /¢ << explant size
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Length Scale /e ~ cell size

Compare of simulations with experiments to calibrate £ based on
number of protrusions.
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Conclusions

> cells use stress to see and be seen by peers
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Conclusions

» cells use stress to see and be seen by peers

» mechanosensing is active (cells exert force, detect resulting
stress/deformation).

» they exploit a special phase transition (microbuckling of
fibrin) to increase detection range by tether formation
(stress decays rapidly in linear solids)

> highly nonlinear problem requires specialized
modelling/simulation techniques to predict/explain

experimental observations by this mechanism

> yes but why?

37 /54



Cell Networks

Lesman-Notbohm-Ravichnadran-Tirrell unpublished experiments

Cell-cell interactions in 3D

Labeled fibrin: 10mg/ml,



Cell Networks

Lesman-Notbohm-Ravichnadran-Tirrell unpublished experiments

Cell-cell interactions in 3D

Labeled fibrin: 10mg/ml,



Cell Networks

Lesman-Notbohm-Ravichnadran-Tirrell unpublished

Cell-cell interactions in 3D

Labeled fibrin: 10mg/ml,



Cell Networks

Lesman-Notbohm-Ravichnadran-Tirrell unpublished

Cell-cell interactions in 3D

Labeled fibrin: 10mg/ml,



Cell Networks

Lesman-Notbohm-Ravichnadran-Tirrell unpublished

Cell-cell interactions in 3D

Labeled fibrin: 10mg/ml,



Cell Networks

Hypothesis: Matrix Remodeling
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Cell Networks

Hypothesis: Matrix Remodeling

Tether network changes ECM mechanical properties (stiffness)
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Cell Networks

2D Simulation
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