

1

ΑΠΟΡΡΥΠΑΝΣΗ ΕΔΑΦΩΝ ΚΑΙ ΥΠΟΓΕΙΩΝ ΥΔΑΤΩΝ

Δρ. Χρ. Τσακίρογλου Ερευνητής Α΄, ΙΤΕ/ΙΕΧΜΗ

ΣΥΝΟΨΗ ΠΑΡΟΥΣΙΑΣΗΣ

- Το πρόβλημα της ρύπανσης του υπεδάφους
- Μέθοδοι απορρύπανσης και ενδεικτικό κόστος
- Απορρύπανση (ex situ) ρυπασμένων εδαφών με μη θερμικό πλάσμα
 - Τρέχουσες δραστηριότητες
- Νανο-απορρύπανση (in situ) ρυπασμένων υπογείων υδάτων
 - Τρέχουσες δραστηριότητες

ΡΥΠΑΝΣΗ ΤΟΥ ΕΔΑΦΟΥΣ ΣΤΗΝ ΕΥΡΩΠΗ ΤΟ 2009

European Environment Agency

ΕΞΑΠΛΩΣΗ ΡΥΠΩΝ ΣΤΟ ΥΠΕΔΑΦΟΣ

Κατηγορίες ρύπων

- Πετρελαιοειδή / οργανικά απόβλητα (NAPL)
- Φυτοφάρμακα / Λιπάσματα (διάχυτη ρύπανση)
- Βαρέα μέταλλα

ΚΟΣΤΟΣ ΑΠΟΡΡΥΠΑΝΣΗΣ ΥΠΕΔΑΦΟΥΣ & ΥΠΟΓΕΙΩΝ ΥΔΑΤΩΝ

Εκτίμηση του ολικού κόστους για απορρύπανση υπεδάφους και υπογείων υδάτων σε ρυπασμένες τοποθεσίες της ΕΕ (Commission of European Communities, "Thematic Strategy for Soil Protection: Impact Assessment of the Thematic Strategy on Soil Protection", Brussels (2006)

	Number of sites	Costs per site	Average total costs	
Feasibility study and	25 to 45% of 1 300 000 to 2			
remediation	000 000 sites where main	€ 19 500 to 73 500	€ 28 billion	
investigation	site investigation took place			
	(325 000 - 900 000 sites)			
Small scale studies	0.86 x (450 000 to 630 000			
(86% of the total	contaminated sites)	€ 85 000 to 160 000	€ 57 billion	
number of sites)	(387 000 – 541 800 sites)			
Large scale studies	0.14 x (450 000 to 630 000			
(14% of the total	contaminated sites)	€ 400 000 to 500 000	€ 34 billion	
number of sites)	(63 000 – 88 200 sites)			
TOTAL			€ 119 billion	

ΔΙΕΡΓΑΣΙΕΣ ΠΡΟΗΓΜΕΝΗΣ ΟΞΕΙΔΩΣΗΣ: ΜΗ ΘΕΡΜΙΚΟ

ΠΛΑΣΜΑ

<u>«Τέταρτη θεμελιώδης</u> <u>κατάσταση της ύλης»:</u> Ιονισμένο αέριο που περιέχει ελεύθερα ηλεκτρόνια, ιόντα και πολύ δραστικά συστατικά (ρίζες ή μόρια και φωτόνια)

High Voltage Electrode High Voltage A.C. Generator Ground Electrode

•O, •OH, O_3 , $H_2O_2 + X \rightarrow products$

Τα παραγόμενα συστατικά του DBD είναι ικανά να οξειδώσουν τους οργανικούς ρύπους Χ

Πλάσμα διηλεκτρικού φράγματος (Dielectric Barrier Discharge DBD)

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΤΑΞΗ ΑΠΟΡΡΥΠΑΝΣΗΣ ΕΔΑΦΟΥΣ ΜΕ ΜΗ ΘΕΡΜΙΚΟ ΠΛΑΣΜΑ

3°ς Διαγωνισμός «Η Ελλάδα Καινοτομεί!» Eurobank-ΣΕΒ

2° Βραβείο Εφαρμοσμένης Έρευνας (23/2/2016)

<u>Τίτλος εργασίας:</u> "Συσκευή Ψυχρού Πλάσματος για την Ταχεία, Αποτελεσματική και Φθηνή Απορρύπανση Ισχυρά Ρυπασμένων Εδαφών"

<u>Ερευνητική Ομάδα</u> Χρ. Αγγελόπουλος (ΙΤΕ/ΙΕΧΜΗ), Π. Σβάρνας (Παν/μιο Πατρών) Χρ. Τσακίρογλου (ΙΤΕ/ΙΕΧΜΗ)

ΑΠΟΔΟΣΗ ΑΠΟΜΑΚΡΥΝΣΗΣ ΚΑΘΕ ΣΥΣΤΑΤΙΚΟΥ (n-C10, n-C12, n-C16)

Aggelopoulos et al., Chem. Eng. J. 270, 428-436 (2015)

ΑΝΑΛΥΣΗ ΑΠΑΕΡΙΩΝ

Gas	Concentration (ppm)	
O ₃	30	
NO	2.3	
NO ₂	200.6	

ΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ

Method	Cost/tn-soil
	(€/tn)
Ex situ plasma	15-30
Steam injection	35-320
Hot air injection	45-70
Smoldering	220-280
Ex situ thermal desorption	40-85
In situ thermal desorption	35-300
Ex situ incineration	90-2500

Vidonish et al., *Engineering* **2**, 428-437 (2016)

ΙΕΡΑΡΧΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΛΕΙΤΟΥΡΓΙΑΣ ΑΝΤΙΔΡΑΣΤΗΡΑ

ΑΠΟΡΡΥΠΑΝΣΗ ΕΔΑΦΩΝ ΣΕ ΒΙΟΜΗΧΑΝΙΚΗ ΚΛΙΜΑΚΑ

ΔΙΕΡΓΑΣΙΑ ΣΥΝΕΧΟΥΣ ΤΡΟΦΟΔΟΣΙΑΣ – ΕΡΓΑΣΤΗΡΙΑΚΗ / ΠΙΛΟΤΙΚΗ ΚΛΙΜΑΚΑ

ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΤΟΠΙΑΣ (ΙΝ SITU) ΕΠΕΞΕΡΓΑΣΙΑΣ

nZVI=Zero Valent Iron nanoparticles

DNAPLs = Dense non aqueous phase liquids

ΟΙΚΟΝΟΜΙΚΑ ΚΙΝΗΤΡΑ ΝΑΝΟ-ΑΠΟΡΡΥΠΑΝΣΗΣ

Τεχνολογία αποκατάστασης	Κόστος απορρύπανσης (<mark>\$</mark>)
Παραδοσιακές μέθοδοι αποκατάστασης	
χρησιμοποιώντας άντληση και επεξεργασία	5,000, 000
(pump and treat, χωρίς χρήση νανοϋλικών))	
Παραδοσιακές μέθοδοι αποκατάστασης π.χ.	
διαπερατά αντιδρώντα φράγματα (PRBs)	3,400,000
Μέθοδοι νανο-αποκατάστασης	
χρησιμοποιώντας νανοσίδηρο μηδενικού	600,000
σθένους (nZVI)	

Tratnyek and Johnson, Nanotoday 1, 44-48 (2006)

ΑΝΑΓΩΓΙΚΗ ΙΚΑΝΟΤΗΤΑ ΤΟΥ nZVI

ΣΥΝΘΕΣΗ CMC-COATED NZVI

250ml

250ml

ΕΠΙΚΑΛΥΨΗ ΤΟΥ nZVI

- Προστασία
- Συσσωμάτωση
 - Οξυγόνο

ΙΔΙΟΤΗΤΕΣ ΤΟΥ CMC – COATED nZVI

	Dynam	ic Light Sc	attering - DLS
Iron concentration	0.1 g/L	1.0 g/L	1.2 (b) $C_{nzvi}=1.0 \text{ g/L}$ • 1 st measurement
рН	8.4	8.3	1.0 - μ log-normal PSD (μ =42.6 nm , σ =20.1 nm)
Eh (mV)	-500	-498	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \end{array} = \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} = \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array} \\ \end{array} \\ \end{array}$
Size Distribution by Volume (nm)	14.86	61.27	
Zeta Potential (mV)	-43.1	-49	
BET Specific Surface Area (m²/g)	-	29.2	10^{1}
			Particle Diameter D (nm)

ΔΙΑΛΥΤΟΠΟΙΗΣΗ ΓΑΓΓΛΙΩΝ ΡCE

Distilled water, Q=0.05 mL/min, t=50 hrs

ΑΠΟΡΡΥΠΑΝΣΗ ΡCE ΑΠΟ nZVI

CMC-coated nZVI; Q=0.05mL/min; t=52 h

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΦΑΙΝΟΜΕΝΩΝ ΜΕΤΑΦΟΡΑΣ & ΑΝΤΙΔΡΑΣΕΩΝ nZVI ΜΕ ΡΥΠΟΥΣ

Advection-Dispersion-Dissolution-Reaction equations:

• nZVI:
$$\frac{\partial(\varepsilon_m S_w c)}{\partial t} + \frac{\partial(\rho_b s)}{\partial t} = -\frac{\partial(u_d c)}{\partial x} + \frac{\partial}{\partial x} \left(\varepsilon_m S_w D_L \frac{\partial c}{\partial x}\right) - k_r \alpha_{nZVI/PCE} c_p c$$

• PCE (aq):
$$\frac{\partial(\varepsilon_m S_w c_p)}{\partial t} = -\frac{\partial(u_d c_p)}{\partial x} + \frac{\partial}{\partial x} \left(\varepsilon_m S_w D_L \frac{\partial c_p}{\partial x}\right) - k_r c_p c + k_m \left(c_{sol} - c_p\right)$$

Rate of NAPL dissolution:

 $\frac{\partial \left(\rho_{NAPL} \varepsilon S_{nw}\right)}{\partial t} = -k_m \left(c_{sol} - c_p\right)$

Deposition interaction sites of nZVI:

$$\frac{\partial(\rho_b s_1)}{\partial t} = \varepsilon_m k_{a,1} \left(1 + A_1 s^{\beta_1} \right) c - \rho_b k_{d,1} s_1$$
$$\frac{\partial(\rho_b s_2)}{\partial t} = \varepsilon_m k_{a,2} \left(1 + \frac{x}{d_{50}} \right)^{\beta_2} c - \rho_b k_{d,2} s_2$$

Darcy's Law:

$$\frac{\partial P}{\partial x} = -\frac{\mu}{k(s(t))k_{rw}} \cdot u_d$$

Μηχανισμός 1: επαυξημένη διαλυτοποίηση PCE και αντίδραση nZVI με διαλυτό <mark>ρύπο</mark>

- Dissolved PCE molecuelsnZVI nanoparticles
- Products of remediation (C₂H₆, C₂H₄)
- Dissolution of PCE from NAPL to aqueous phase
- Reaction of dissolved PCE with suspended nZVI
- Advection-Dispersion of dissolved PCE, reacting / non-reacting nZVI, PCE reaction products

ΔΥΝΑΜΙΚΗ ΠΡΟΣΑΡΜΟΓΗ ΜΕ ΒΑΣΗ ΤΟΝ

ΜΗΧΑΝΙΣΜΟ 1

PCE remediation by nZVI injection

Μηχανισμός 2: προσκόλληση nZVI σε διεπιφάνειες PCE/νερού και άμεση αντίδραση με γάγγλια PCE

- nZVI nanoparticles
 Products of remediation (C₂H₆, C₂H₄)
 - Adsorption of nZVI on hydrophilic PCE/water interface
 - Direct reaction of nZVI with PCE ganglia
 - Advection-Dispersion of reacting / nonreacting nZVI, PCE reaction products

ΔΥΝΑΜΙΚΗ ΠΡΟΣΑΡΜΟΓΗ ΜΕ ΒΑΣΗ ΤΟΝ ΜΗΧΑΝΙΣΜΟ 2

Tsakiroglou et al., Science of the Total Environment 563–564, 866–878 (2016).

ΥΠΟΛΟΓΙΣΜΟΣ ΡΥΘΜΟΥ ΑΝΤΙΔΡΑΣΗΣ nZVI/PCE ME ΤΟ ΜΟΝΤΕΛΟ ΣΥΡΙΚΝΟΥΜΕΝΟΥ ΠΥΡΗΝΑ

Shrinking-core model

Inverse modeling of batch tests

$\begin{aligned} & \frac{dC_{LRb}^{*}}{d\tau} = -\left(\frac{3L^{2}M_{SR}C_{SR0}k}{D_{m}\rho_{z}}\right)_{0}^{\infty} \frac{\left(C_{LRb}^{*} - C_{LRe}^{*}\right)r_{e}^{*2}f(r_{z})}{r_{z}\left[r_{e}^{*2}\left(k/k_{m}\right) + r_{e}^{*}\left(1 - r_{e}^{*}\right)\left(kr_{z}\right)/\left(\lambda D_{m}\right)\right]}dr_{z} \end{aligned}$

 $\frac{dC_{SR}^*}{d\tau} = -\left(\frac{3L^2 bM_{SR} C_{LRib}^{\ n} k}{D_m \rho_s}\right)_0^{\infty} \frac{C_{LRc}^{*\ n} r_c^{*2} f(r_s) dr_s}{r_s}$ Tsakiroglou et al., *Chem. Eng. Sci.* 167, 191-203 (2017)

ΕΓΚΛΩΒΙΣΜΟΣ nZVI ΣΕ ΛΙΠΟΣΩΜΑΤΑ

Συνεργασία με την ομάδα της Καθ. Σ. Αντημισιάρη

TEM

<u>Προβλήματα προς επίλυση</u>

- Ανεπαρκής εγκλωβισμός στις λιποσωμικές δομές
- Διέλευση nZVI και παγίδευση λιποσωμάτων

Terzi et al., Coll. & Surf. A: Physicochem. & Eng. Aspects 506, 711-722 (2016)

ΣΥΝΘΕΣΗ nZVI ΑΠΟ ΦΥΤΙΚΑ ΕΚΧΥΛΙΣΜΑΤΑ

(«ΠΡΑΣΙΝΟΣ ΝΑΝΟΣΙΔΗΡΟΣ»)

Χρήση φυτικών εκχυλισμάτων:

Εναλλακτική μέθοδος σύνθεσης και σταθεροποίησης των νανοσωματιδίων σιδήρου USEPA- VeruTEC (Hoag et al., 2008)

Χρησιμοποιούνται εκχυλίσματα πλούσια σε πολυφαινόλες.

Ο σίδηρος Fe(III) ανάγεται σε Fe(0):

 $nFe^{2+} + 2 R-C_6H_3(OH)_n \rightarrow nFe^0 + 2n R-C_6H_3O_2 + 2nH^+$

Δημιουργείται προστατευτικό κάλυμμα γύρω από το νανοσίδηρο (δηλ. οι πολυφαινόλες δρουν ως σταθεροποιητές)

ΣΥΝΘΕΣΗ nZVI ΑΠΟ ΦΥΤΙΚΑ ΕΚΧΥΛΙΣΜΑΤΑ

Φυτικά Εκχυλίσματα

Πράσινο τσάι (GT)

Δυόσμος (SM)

Γαρύφαλλο (CL)

Ρόδι (PG)

Συνεργάτες / Ερευνητική Ομάδα

Δρ. Χρ. Αγγελόπουλος, FORTH/ICE-HT Δρ. Κ. Τερζή, USA Κ. Hajdu, Univ. Szeged, Hungary Α.Σικινιώτη-Lock, MSc, UK Α. Γκέλιος, UK

Συνεργασία με άλλες ΕΟ

Δρ. Β. Μπουργανός, ITE/IEXMH Δρ. Μ. Κλάπα, ITE/IEXMH Καθ. Σ. Αντιμισιάρη, ITE/IEXMH & Π. Πατρών Επ. Καθ. Π. Κλεπετσάνης , ITE/IEXMH & Π. Πατρών

Projects SOIL-PLASMA, **Supporting Postdoctoral Researchers**. SOILREM, **ARISTEIA II**

