

Sculptured ultrashort laser beams for materials engineering and energy harvesting

Stelios Tzortzakis

Science Program, Texas A&M University at Qatar Institute of Electronic Structure and Laser, FORTH & University of Crete, Greece

Outline

Introduction

- Intense laser beams Solitons Filaments and Complex spatiotemporal wave packets
- Sculpted Exotic beams for tamed waves

Advanced materials engineering

• Large volume high resolution photo-polymerization

Silicon Photonics

 Direct laser writing of photonic circuits in the bulk of silicon – merging optics and electronics under the same platform

Teaser: Passive radiative cooling

• Improving the performance of photovoltaics

Intense nonlinear laser propagation: Filamentation

Dynamic equilibrium in space and time between Kerr effect and ionization

Modeling the propagation of intense fs pulses

$$\frac{\partial E}{\partial z} = \frac{i}{2k} \Delta_{\perp} E - i \frac{k}{2} \frac{\partial^2 E}{\partial t^2} + N(E^2, \rho) \cdot E$$

where: $N(E^{2}, \rho) = T^{2}N_{Kerr}(|E|^{2}) + N_{Plasma}(\rho) + TN_{MPA}(|E|^{2})$

Unidirectional Pulse Propagation Equation (UPPE)

$$N_{Kerr}\left(\left|E\right|^{2}\right) = ik_{0}n_{2}\left(1-a\right)\left|E\right|^{2} + ik_{0}n_{0}a\int_{-\infty}^{t}R\left(t-\tau\right)\left|E\right|^{2}$$
$$N_{Plasma}\left(\rho\right) = -\frac{\sigma}{2}\left(1+\iota\omega_{0}\tau_{C}\right)\rho$$
$$N_{MPA}\left(\left|E\right|^{2}\right) = -\frac{\beta_{K}}{2}\left|E\right|^{2K-2}\left[1-\frac{\rho}{\rho_{at}}\right]$$
$$T = 1+i\omega_{0}\frac{\partial}{\partial t}$$

$$\int_{-\infty}^{t} R(t-\tau)|E|^{2} d\tau$$

$$\beta_{K} = K\hbar\omega_{0}\rho_{at}\sigma_{K}$$

$$\sigma_{K} : Cross Section for Multi Photon Ionization$$
with rate $W_{MPI} = \sigma_{K}I^{K}$
for $K = \frac{U_{i}}{\hbar\omega_{0}+1}$ photons
$$\sigma = \frac{k_{0}}{n_{0}\rho_{c}} \cdot \frac{\omega_{0}\tau_{c}}{(1+\omega_{0}^{2}\tau_{c}^{2})}: Cross Section for Inverse Bremsstrahlung$$

$$\overline{\frac{\partial\rho}{\partial t}} = \sigma_{K} |E|^{2K} (\rho_{at} - \rho) + \frac{\sigma}{U_{i}} \rho |E|^{2} - a\rho^{2}$$

APL 93, 041120 (2008); PRA 84, 053809 (2011)

Exotic waves

Self-healing Airy cube light bullets

Phys. Rev. Lett. 105, 253901 (2010)

Airy Ring Sharply Autofocusing Beams

Opt. Lett. 36, 1842 (2011)

Advanced materials engineering

Direct laser writing by Multi-photon polymerization

 3D Writing of complex Micro- & Nanostructures but limited in volume, typically 100 μm - height

[*]

I. Sakellari et. al, ACSNano, 6, 3, 2302–2311, 2012

Using ring-Airy beams

Typical phase mask

Intensity profile at the FT plane **Ring-Airy propagation dynamics**

Working-distance control

By adjusting the w and/or r_0 parameters of the primary ring, using the appropriate phase mask, the focus position can be manipulated in real time with the SLM.

Intensity profiles of ring-Airy beams as captured by the CCD at the FT plane

Experimental intensity distributions (normalized values) of the ring-Airy beams along the propagation axis

Bessel beams vs. ring-Airy beams

Focal voxel aspect Ratio comparative curves

- In an MPP application the polymerization takes place only at areas where the intensity is high enough.
- We used the 80% of the peak intensity distribution as a threshold.
- The ring Airy beams keep the voxel aspect ratio almost invariant !
- The voxel aspect ratio for Bessel beams is increasing as the beam focus is pushed further away.

Focus Aspect Ratio: Longitudinal size of Focus Focus Diameter

Optica 3, 525-530 (2016)

3D structures using ring-Airy beams

Optica 3, 525-530 (2016)

3D structures using ring-Airy beams

BurjKhalifa, Dubai

Silicon photonics

"MINOS" Greek-French CNRS associated lab

MINOS

Coordinators: Mark Sentis (LP3) & Stelios Tzortzakis (IESL)

The Optical-Electronics Telecommunications Interface

The road from this...

To this... The 50 Gbps Si Photonics Link

0

Download a full HD movie from iTunes in less than a second!

Imaging laser propagation in Si

A Transformation Optics Solution to nonparaxial propagation problems

PRL 117, 043902 (2016)

The problem is projected to a stretched spacetime one such that it becomes paraxial!

Excellent agreement between our simulations and experimental results

PHYSICAL REVIEW LETTERS

Identifying the problem

To date all attempts to modify the bulk of Si using femtosecond pulses have failed! Why?

Two-photon absorption and defocusing in plasma lead to the depletion of the pulse energy on the way to focus.

Achieving ultrafast laser writing in bulk Si – opening the horizon for 3D silicon photonics

Induce permanent index modification in the bulk of Si using extreme localization of light in space and time.

Took <u>20 years</u> to reach this milestone from the time of the first demonstration in the bulk of glasses!

Nat. Commun. 8, 773 (2017)

Teaser: Passive radiative cooling

Passive Radiative Cooling

- Radiative cooling: Dissipate excess heat into remote heat sinks via <u>thermal</u> <u>radiation</u>.
- Materials: Combination of natural and artificial materials, like <u>metamaterials</u>.
- Application in photovoltaic cells: reduced temperature of operation, resulting in higher performance and longer lifetimes.
- A joint research project between FORTH and Texas A&M University, funded by Qatar Foundation.

Acknowledgments

INSTITUTE OF

UNIS group:

- V. Fedorov
- T. Koulouklidis
- M. Manousidaki
- D. Mansour Ch. Daskalaki
- CII. Daskalak
- M. Loulakis
- D. Papazoglou

Funding

Laserlab Europe

SEVENTH FRAMEWORK PROGRAMME

University of Crete

2020

aserlab Europe

in the 7th Framework Programme of the European Union

The "Integrated Initiative" of European Laser Infrastructures

HORIZ

Collaborators:

Farsari / Manousidaki, FORTH Kafesaki / Perrakis, FORTH Grojo / Chanal, Univ. of Marseille Zacharakis / Di Batista, FORTH A. Couairon, Ecole Polytechnique D. Christodoulides, CREOL Moloney / Kolesik, Arizona X.-C. Zhang, Rochester

الصندوف القطري لرعلية البحت العاسي Qatar National Research Fund

Member of Qatar Foundation