FORTHID TO PASTI

From Biotech to Cultural Heritage: A leap forward !

IMBB LABORATORY

Dimitris Kafetzopoulos kafetzo@imbb.forth.gr

Molecular Biotechnology Break-through

Completion of the Human Genome Project (2003) and publication of the HapMap Project results (2005) initiated the development of a wide range of technologies and applications including genomics, (NGS, nanopore, single molecule), transcriptomics (microarrays, molecular signature assays), proteomics (Mass spec), metabolomics (GC-MS, NMR), eDNA profiling, genetic breeding, precision medicine, personal genomics etc.

Obama, announcing his "Precision Medicine Initiative" Jan 30, 2015:

One study found that every dollar we spent to map the human genome has already returned \$140 to our economy

GWAS & SNP maps

DNA sequencing revolution

Low cost, huge output, broadly accessible and versatile

THE SEQUENCE EXPLOSION

pal

Se

ã

Billions

t the time of the announcement of the first drafts of the human genome in 2000, there were 8 billion base pairs of sequence in the three main databases for 'finished' sequence: GenBank, run by the US National Center for Biotechnology Information; the DNA Databank of Japan; and the European Molecular Biology Laboratory (EMBL) Nucleotide Sequence Database. The databases share their data regularly as part of the International Nucleotide Sequence Database Collaboration (INSDC). In the subsequent first post-genome decade, they have added another 270 billion bases roughly every 18 months. But this number is dwarfed by the amount of raw sequence that has been created and stored by researchers around the world in the Trace archive and Sequence Read Archive (SRA). See Editorial, page 649, and human genome special at www.nature.com/humangenome

DNA SEQUENCES BY TAXONOMY

International Nucleotide Sequence Database Collaboration: The main repositories of 'finished' sequence span a wide range of organisms, representing the many priorities of scientists worldwide.

Trace Archive: Developed to house the raw output of highthroughput sequencers built in the late 1990s, the trace archive spans a wide range of taxa.

HOW MANY HUMAN GENOMES?

The graphic shows all published, fully sequenced human genomes since 2000, including nine from the first quarter of 2010. Some are resequencing efforts on the same person and the list does not include unpublished completed genomes. Venter, J. C. et al. Science 291, 1304–1351 (2001).
 International Human Genome Sequencing Consortium Nature 409, 860–921 (2001).
 International Human Genome Sequencing Consortium Nature 431, 931–945 (2004).
 Levy, S. et al. PLoS Biol. 5, e254 (2007).
 Wheeler, D. A. et al. Nature 452, 872–876 (2008).
 Ley, T. J. et al. Nature 456, 66–72 (2008).

7. Bentley, D.R. et al. Nature 456, 53-59 (2008).

8. Wang, J. et al. Nature 456, 60-65 (2008).

Ahn, S.-M. et al. Genome Res. **19**, 1622–1629 (2009).
 Kim, J.-I. et al. Nature **460**, 1011–1015 (2009).
 Funshkarev, D., Neff, N. F. & Quake, S. R. Nature Biotechnol. **27**, 847–850 (2009).
 Mardis, E. R. et al. N. Engl. J. Med. **10**, 1058–1066 (2009).

 Drmanac, R. et al. Science 327, 78–81 (2009).
 McKeman, K. J. et al. Genome Res. 19, 1527–1541 (2009). Pleasance, E. D. et al. Nature 463, 191-196 (2010).
 Pleasance, E. D. et al. Nature 463, 184-190 (2010).
 T. Clark, M., I et al. PLoS Genet. 6, e1000832 (2010).
 Rasmussen, M. et al. Nature 463, 757-762 (2010).
 Schuster, S. C. et al. Nature 463, 757-762 (2010).
 Claupski, J. R. et al. K. Pagi, J. Med. doi:10,1056/ NEJMoa0908094 (2010).
 Roach, J. C. et al. Science doi:10.1126/ science.1186802 (2010).

Dimitris Kafetzopoulos Heraklion, October 14

A glioma cell line¹⁷, Inuk¹³

Page s

Trends in Human Genome Sequencing Costs

Heraklion, October 14

Whole Exome Sequencing Workflow

Reported Pathogenic Variants after manual annotation/curation

Human Genetic Morphometry

Human Diversity

- 3.000.000 polymorthisms (SNP)
- 2/3 transitions from C to T
- Occur in both coding and not coding regions
- Evolutionarily stable
- Show different frequencies
- Are useful for genome mapping
- Are inherited grouped in haplotypes
- Show different penetration in phenotype.

Genomic determinants of facial characteristics

A Practical Guide to the HIrisPlex System: Simultaneous Prediction of Eye and Hair Color from DNA

Susan Walsh and Manfred Kayser

	Numbe	r DNA	Gene	Blond(beta)	Blond(p)	Brown(beta)	Brown(p)	Black(beta)	Black(p)	Red(beta)	Red(p)
the state of the second s	11	variant									
	1	N29insA	MC1R	-	-	-	-	-	-	-21.9731	0.994026
	2	rs11547464	MC1R	-0.947299	0.081175	-0.4007191	0.441688	-16.782634	0.995907	-2.8866	4.42E-08
	3	rs885479	MC1R	0.272536	3.36E-01	0.1938828	0.460717	2.29E-01	0.575679	0.315529	0.707292
	4	rs1805008	MC1R	-0.57034	0.003874	-0.3058868	0.097798	-5.66E-01	0.084668	-3.02472	2.20E-16
L'ALTINET AND	5	rs1805005	MC1R	0.20689	2.28E-01	0.2382036	0.128146	-1.57E-01	0.539306	-0.86742	0.025064
	6	rs1805006	MC1R	1.718508	0.045418	2.1268136	0.009857	-1.70E+01	0.996356	-2.43626	0.001714
F The second sec	7	rs1805007	MC1R	-0.53542	0.030279	-0.1503278	0.508278	-1.32E+00	0.009567	-3.59956	2.20E-16
	8	rs1805009	MCIR	0.550547	5.60E-01	0.5309897	0.49513	-4.70E-01	0.693758	-4.25774	4.14E-08
ANAL AND ANAL	9	Y152OCH	MC1R		100		-	-		-19.3501	0.992969
and the second	10	rs2228479	MC1R	-0.025643	8.83E-01	-0.1128742	0.483857	1.98E-01	0.413966	-0.61967	0.110936
	11	rs1110400	MC1R	-0.366071	0.338334	-0.5920858	0.123046	6.63E-01	0.21252	-1.67775	0.009302
	12	rs28777	SLC45A2	0.566568	0.414238	0.3138274	0.561428	4.85E-01	0.468883	-0.41607	0.743869
and the second sec	13	rs16891982	SLC45A2	0.863795	0.194837	0.2562763	0.618846	6.29E-01	0.326034	0.891013	0.522114
	14	rs12821256	KITLG	-0.434962	0.020898	-0.1743193	0.32142	-6.87E-01	0.056556	0.406751	0.312582
	15	rs4959270	EXOC2	-0.251437	0.019073	-0.1555227	0.120958	-2.71E-01	0.104087	-0.34639	0.107774
and a second descent	16	rs12203592	IRF4	1.741377	2.20E-16	1.0810914	2.22E 16	8.80E-01	2.35E 06	0.071132	0.773323
	17	rs1042602	TYR	0.125113	0.24551	0.141479	0.155781	-4.52E-02	0.779493	-0.3842	0.071464
	18	rs1800407	OCA2	-0 204189	0 331948	-0.0048133	0 97935	-3 53E-01	0 202517	0 223931	0 580501
	19	rs2402130	SI C24A4	0.354085	0.00797	0.2752735	0.023746	4 36E-02	0.820086	-0.08861	0 724429
	20	re12013832	HERC2	1 372353	2 20F-16	0 6707040	6 83E 10	1 195+00	6.65E 13	0 754720	0.004310
	20		DICLUASID	0.099310	0 536490	0.1939613	0.154029	1.64E 01	0.440722	0.73194	0.004313
	21	1823/8249	FIGU/ASIP	0.088519	0.520489	0.1828012	0.134928	-1.04E-01	0.449722	-0.72184	0.002302

Genomic determinants of facial characteristics

OPEN CACCESS Freely available online

PLOS GENETICS

A Genome-Wide Association Study Identifies Five Loci Influencing Facial Morphology in Europeans

Fan Liu¹, Fedde van der Lijn^{1,2,3}, Claudia Schurmann⁴, Gu Zhu⁵, M. Mallar Chakravarty^{6,7}, Pirro G. Hysi⁸, Andreas Wollstein¹, Oscar Lao¹, Marleen de Bruijne^{2,3}, M. Arfan Ikram^{3,9}, Aad van der Lugt³, Fernando Rivadeneira^{9,10}, André G. Uitterlinden^{9,10}, Albert Hofman⁹, Wiro J. Niessen^{2,3,11},

								Disco (N=S	overy 5,388)		SYS (M	1 = 568	B)	B (1	1=3	+Twir (,867)	SUK	
Gene	SNP	Chr	BP	Eff	Alt	FreqEff	Trait*	Beta	Se	P	Beta	se	P	% B	eta	se	P	%
PRDM16	rs4648379	1p36.23-p33	3251376	т	с	0.28	AlrL-Prn	-0.20	5 0.05	1.13E-08	0.02	0.21	0.930	1.1 0	13	0.09	0.152	0.0
							AlrR-Prn	-0.2	1 0.05	2.50E-07	-0.04	0.22	0.841	0	15	0.09	0.096	
рахз	rs974448	2q35	222713558	G	A	0.17	EyeR-Nsn	0.29	0.05	1.56E-08	-0.19	0.20	3.6E-01	1.0 0	10	0.13	0.438	3.6
							EyeL-Nsn	0.29	0.05	7.06E-08	0.06	0.14	6.6E-01	0	21	0.12	0.076	
TP63	rs17447439	3q28	191032117	G	A	0.04	EyeR-EyeL	-0.91	0.15	4.44E-08	-0.42	0.68	5.4E-01	6.4 -	0.56	0.27	0.043	21.4
C5orf50	rs6555969	5q35.1	171061069	т	с	0.33	ZygR-Nsn	0.41	0.07	1.17E-09	0.31	0.14	3.2E-02	16.0 -	. 3	-	-	17.9
							ZygL-Nsn	0.35	0.07	5.80E-07	0.39	0.14	5.6E-03	17		-		
							EyeR-Nsn	0.24	0.04	2.05E-08	0.42	0.12	3.7E-04	0	06	0.10	0.590	
							EyeL-Nsn	0.26	0.04	2.28E-09	0.47	0.12	7.5E-05	0	21	0.10	0.031	
COL17A1	rs805722	10q24.3	105800390	T	С	0.19	EyeL-Nsn	0.29	0.05	3.97E-08	0.54	0.16	5.9E-04	18.1 0	08	0.10	0.510	0.0
							EyeR-Nsn	0.26	0.05	6.47E-07	0.51	0.15	9.7E-04		0.23	0.13	0.074	

Chromosomal SNPs in Ancestry Panel

mtDNA & Chr-Y DNA as species and ancestry identification markers

mtDNA in most species is maternally inherited, matching individuals with "recent" ancestry in haplogroups different in various populations.

Chr-Y is a marker of patrilinear ancestry with Short Tandem Repeats (STRs) and Single Nucleotide Polymorphisms (SNPs) markers defining also haplogroups.

Deduced human migration map based on mtDNA & Chr -Y

Ancestry tests

Population Name	Geographic Location	Sample Size	Likelihood	
Greeks	Europe	104	1.65E-13	
Adygei	Europe	108	1.45E-13	
Druze	Asia	212	1.22E-13	
Jews, Ashkenazi	Europe	166	7.76E-14	
Pashtun	Asia	184	5.04E-14	
Chuvash	Europe	84	6.38E-15	
Sardinian	Europe	68	3.75E-15	
Samaritans	Europe	82	3.00E-15	
Italians	Europe	172	2.48E-15	
Jews, Sephardic	Europe	54	1.21E-15	

Population Name	Geographic Location	Sample Size	Likelihood
Russians	Europe	96	7.02E-14
Russians	Europe	68	1.15E-14
Komi-Zyrian	Asia	94	8.45E-15
Hungarian	Europe	184	6.83E-15
Greeks	Europe	104	3.07E-15
Danes	Europe	102	3.02E-15
Finns	Europe	72	2.87E-15
Irish	Europe	232	2.55E-15
Italians	Europe	172	1.92E-15

Ancient DNA Damages

Figure 2. Typical size distributions of raw reads from single-stranded and double-stranded libraries. Overlapping histograms of the distribution of insert sizes for Ion Torrent libraries prepared from sample Mam2 with either single-stranded (red) or double-stranded (blue) libraries show typical characteristics of insert size incorporation observed for each method. Adapter sequence has been trimmed by the Ion Torrent Software Suite, which also removes inserts 4 bp or less for the double-stranded library. The 34 bp sequences flanking the insert for the single-strand procedure (see Supplementary Material) and PCR duplicates for both libraries have been removed. The total number of reads has been normalized between the two libraries.

Bennett et al BioTechniques 2014 56:289

Dimitris Kafetzopoulos Heraklion, October 14

Hofreiter et al Nat Rev Genet. 2001 2:353

Ancient DNA sequencing challenges

The IMBB Ancient DNA Laboratory

ΠΕΡΙΦΕΡΕΙΑ ΚΡΗΤΗΣ REGION OF CRETE LAB ARI

LAB ARRANGEMENT

LAB SPECIFICATIONS

- Building distant from all DNA analysis (DNA free).
- Insulated rooms with positive pressure gradient
- HEPA filter ventilation
- Central vacuum cleaning
- Furniture & clothing made from non-biological materials
- Exclusive equipment

- Bleach-peroxide & UV light decontamination
- Controlled & restricted access
- Keeping detailed protocol of interventions
- Following standard and certified procedures
- Use forensics grade consumables

aDNA NGS Workflow

aDNA sequencing analysis of archeological remains from Amvrakia

AMVRAKIA WEST NECROPOLIS	Tomb	Sample type	Average Read Length	Total No of Reads	Mapped Reads (hs 37)	% Human Reads	Gender
	CCLXXII, East Support Wall 15/11/12	Cuspid 27	65,7	24.254.094	437.598	1,92	Male
αραγματική Νεκρόπολις Διατική	CXXII, West Support Wall 11/10/12	Molar 16	57,6	46.713.285	984.268	2,23	Female
Frequencies of the second seco	CXXV, West Support Wall 24/10/12	Petrous Bone R	56,5	24.262.723	9.108.559	39,28	Female

Ancient DNA and Palaeogenetics explosion

												1st Middle Pleis	stocene draft genome	
		Lalueza-Fox et a 1 st ancient nucl		Lalueza-Fox et al., 1 st ancient nuclear g	Rasmussen et al., 1 1 st ancient human nuclear genome 1 lueza-Fox et al., Green et al., 1 st Neanderthal draft nuclear genome 1				Fu et al., 1 st chromosome capture Carpenter et al., 1 st whole genome enrichment capture					
	Himchi et al	Pääho at al	1	Store et al	,	Sabultan at	al	MCIR (Neanderthal)	Burhano et al		Mover et al		
	1st aDNA study	1 st aDNA st	udy	1 st aDNA	A sex	1 st ancient	t Y-chromosome	1 st nuclear genotypin	ig D	1st ancient human exome cap	ture	1 st Middle Pleis	stocene hominin	
d	1984 1985	1988	1991 1	996 1	ation 1997 '	1999	g	2007 200	08	2010	2012	2013	2014	
	Pääbo 1 [≉] aDN/ on humai	A study 1 remains	Hagelberg and 1 [#] aDNA stu on bones	d Clegg., ady	Krings et al., 1" aDNA s on Neander	tudy rthal			Gilbert et al., 1 st ancient human mitochondrial genome Green et al., 1 st Neanderthal mitochondrial genome		Meyer et al., 1 st high quality hominin nuclear	archaic r genome	Pedersen et al., 1 st ancient human epigenome	

Outranda at a

Tangible Cultural Heritage Assets

Research Plans

• Studies for elucidating origins, migrations, environment and relations of ancient populations: Focus on the Corinthian Colonization

(proposal submitted)

• Genetic characterization, Digitization & Reconstruction of ancient individuals

(proposal in preparation)

• Exploration & modelling of genetic markers as a means for spatiotemporal classification of human archeological remains

Perspectives

- Establish a state-of-the-art Archeogenetics facility within the framework of the National and European Research Infrastructures of Cultural Heritage
- Develop advanced analytical methods, handling protocols and interpretation services, addressing the needs of the Archeological community and unravelling the huge wealth of Greece in archeological findings
- Promote multidisciplinary approaches in Archeogenetics, Bioarcheology and Paleontology research, expand towards Archeoproteomics and provide access to an advanced, competence center facility
- Bridge the gap between humanities and biotechnologies and work towards the integration of highly heterogeneous and distributed Archeological research data

E-RIHS EUROPEAN RESEARCH INFRASTRUCTURE FOR HERITAGE SCIENCE

Dimitris Kafetzopoulos Heraklion, October 14

National Research Infrastructure

Acknowledgements

Members

- Eirini Stratidaki
 - Despina Vassou
 - Eugenia Tabakaki
 - Nikos Psonis
 - Christiana Choulaki

Collaborators

- Eva-Maria Geigl, JMI-CNRS, FR
- Morten Erik Allentoft, Geogenetics, DK
- Varvara Papadopoulou, Arch. Ephorate of Arta, GR
- Manolis Maravelakis, Tech. Un. of Crete, Chania GR
- Manolis Papagrigorakis, Sch. of Dentistry, Un. Athens, GR

Funding Agencies & Projects

Pooling Activities, Resources and Tools for Heritage E-research Networking, Optimization and Synergies

HELLAS-CH

National Research Infrastructure

FORTHID TO PASTI

From Biotech to Cultural Heritage: A leap forward !

IMBB LABORATORY

Dimitris Kafetzopoulos kafetzo@imbb.forth.gr

-Coalescence-

Wright-Fisher Model for N = 6

Figure 1: Forward process in the WFM.

Figure 2: Pruned forward process in the WFM.

MRCA = Most Recent Common Ancestor

