MavayiwTta Moipadln
IvoTiTouTo Mopiakng BioAoyiag kal BiotexvoAoyiag (IMBB)
Tdpupa TexvoAloyiac kal '‘Epeuvacg (ITE)

_Ynoloyotikn Stepevvnon Twv
/}\lEUlewV pnxavawv |.lvr| u{]q
Kaluaenonq 3 /

F /

rl



http://www.dendrites.gr/

WHAT?

What is the role of dendrites in

« neuronal signal integration

« memory formation across levels (neuron, microcircuit
network) & regions (hippocampus, PFC, amygdala, V1)

AIM: find a unifying function/model for dendrites across
regions and abstraction levels



WHY?

»  ability to learn, store and retrieve information
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many people - poor quality of life
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Dendrites
»  thin processes that allow neuronal communication

»  brain’s main processing units: No 1 Candidates
although not rigorously tested

»  properties altered in memory loss

»  no direct link between dendrites and memory

:, Understanding how dendrites contribute to memory
formation is critical for understanding and treating
memory deficits




HOW?

-

We use computational methods to investigate
these questions
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What have we learned from
these models?

Two recent examples



Do dendrites help our ability to discriminate

objects?

Pattern Separation

Input

Output

Pattern separation: Ability to
discriminate between  two
similar objects; from Bakker et
al., 2008.

Computational task during
which overlapping (similar)
inputs are transformed to non-
overlapping representations



Spiros Chavlis

A DG network model considering

DG Network model

« 2000 GCs
(in clusters of 20)
« 100 BCs
(1 per cluster)
+ 80 MCs
« 40 HIPP
+ 400 ECs

GC dendrites

+ GC connectivity motif



Dendritic ablation
* GC models with 12, 6, 3 dendrites
* Same path length
* Same number of inputs
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Pattern separation efficiency decreases with dendritic
ablation; fewer dendrites = worse performance.
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DG dendrites aid pattern separation

* GC models with 3, 6 and 12 dendrites
» Different path length
* Same number of inputs
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Pattern separation efficiency increases with dendritic growth;
More, longer dendrites = better performance.



Matching sparsity also enhances pattern
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Key Predictions

DG model that incorporated dendrites, realistic inhibition and has the ability to distinguish
overlapping patterns

Dendrites facilitate pattern separation through mediating sparsity

Pattern separation can also be facilitated via synaptic weight, “leak” channel density and
somatic dimensions modifications that enhance sparsity

Sparsity seems to be the key determinant in pattern separation

Pattern
Separation

Dendrites | > l

Weight, leak,
somatic size

Chavlis, Petrantonakis and Poirazi, Hippocampus, 2016



Using our model to explain context
discrimination in mice

Attila Losonczy Nathan Danielson
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« MCs more excitable than GCs and less spatially tuned
« How do they contribute to context discrimination?

Danielson, et al., Neuron, 2017



Prediction/explanation: MCs contribute
to pattern separation via increasing

&i sparsity

Spiros Chavlis
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Danielson, et al., Neuron, 2017



How do we link information to
form associative memories?



Associating memories

Memory associations for the word “fly” Fear/context memory associations in mice

TRAINING

«Animal is placed in novel context
*Hears a tone
*Receives foot shock

CONTEXTUAL TEST CUED TEST

*Animal Is returned to same context «Animal is placed in modified context
Test for freezing behavior *Hears a tone
*Test for freezing behavior




The neuronal overlap hypothesis:
Memories that are temporally close are stored in

Alcino Silva overlapping circuits
UCLA

Episode
y4

Time —>
Time —>

Silva et al, Science 2009



Associating memories via overlapping storage
INn neurons

Indeed, the Silva lab showed that two memories are linked if
learned within a few hours, due to overlapping storage in
common neurons. This ability declines with age.
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Cai et al, Nature, 2016



A large scale network model with active
dendrites

George
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Encoding two memories

Strong Strong 2

D50 2

Dendritic
Overlap branches
with potentiated
synapses from
both memories

Two memories Neuronal
Overlap

separated by several neurons coding

L for both
memories




Encoding two memories

Neuronal Overlap Dendritic Overlap
clusterin
50 : . : . 50 . ( . .g) .
Interference?
40 { 40} P )
5
30 1 30} 3
. . o
Binding - | 20l 2
N || 18 [ R :
Chance 1° ‘ 1 10} BER . | ; U R
0

mmm Somatic PRPs
mmmm | ocal PRPs

mmm S&L PRPs (1]

Kastellakis et al, Cell Reports, 2016



Summary

Prediction: dendrites of CA1 pyramidal cells integrate inputs as semi-
independent sigmoidal units. Verified

Prediction: CA1 neurons act as 2-stage integrators. Evidence in favor
Prediction: axons with correlated activity should wire together in the
same dendrites (clustering). Verified to a large extent

Prediction: dendritic synapse location may serve as a mechanism for
stimulus specificity via the induction of dendritic spikes. Verified to a
large extent in other neurons

Prediction: dendrites enhance pattern separation via increasing
sparsity. Pending

Prediction: memories are linked through neuronal and dendritic
overlaps, via synapse clustering. Some parts verified, others pending
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Simplified yet well validated
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Realistic firing patterns for all modeled cell types.

I/0O function of GCs with active
dendrites. Synaptic stimulation in a
single branch, Voltage @ soma

Inset adopted from Krueppel et al.,
2011




Associative memory encoding in the network

Presentation: Each stimulus is represented by a set of afferent axons
which initially target 70% of the neurons of the (naive) network at
randomly selected dendrites.

Learning: Each stimulus (1s, 30 Hz Poisson train) is presented
repeatedly to the network (for 4s) and plasticity (synaptic LTP/LTD,
branch strength potentiation) takes place. Homeostatic mechanisms &
plasticity of intrinsic excitability operate after learning.

Recall: By presenting S1 or S2 we recall the memory (S51+S2), we
identify the neuronal population that is “recruited” by the memory and
we characterize its properties.

Encoding assembly

model

Stimulus 1 —

Inhibitory Neurons

- Associative memory = S1 + S2



