

VO₂-based Thermochromic Materials for Smart Glazing Systems

E. Gagaoudakis^{1#}, G. Kiriakidis^{1,2}, E. Aperathitis³, L. Zouridi^{1,4}, and V. Binas^{1,2*}

¹ Transparent Conductive Materials and Devices Lab / IESL / FORTH, Heraklion, Greece

² Department of Physics, University of Crete, Heraklion, Greece

³ Microelectronics Research Group, IESL / FORTH, Heraklion, Greece

⁴ Department of Materials Science and Technology, University of Crete, Heraklion, Greece

Presenting author: E. Gagaoudakis, email: mgagas@iesl.forth.gr

* Corresponding author: V. Binas, email: binasbill@iesl.forth.gr

ABSTRACT

Thermochromism is the property of some materials by which they change their optical properties upon heating above a critical transition temperature (T_c), characteristic for each material. Among these materials, Vanadium dioxide (VO₂) has been extensively studied, due to the fact that its T_c , is the closest to room temperature (RT). In specific, for temperature below T_c = 68°C, it has a monoclinic structure, being a semiconductor and IR transparent, while for temperature above 68°Cit has a tetragonal rutile structure, metallic behavior and becomes IR reflective. In addition, the visible transmittance remains constant and independent of temperature. Thus, VO₂ is an ideal candidate as thermochromic coating on "smart" glazing systems, in order to regulate the internal temperature in buildings.

In this work, thermochromic VO_2 films were synthesized using two different techniques, namely rf sputtering and hydrothermal synthesis. The former, is a well-known technique for large-scale films' deposition of high quality, while the latter is an easy and cost-effective method to synthesize materials in the form of powder.

In particular, thermochromic undoped and Mg-doped VO₂ films were grown by rf sputtering technique, at a low deposition temperature of 300°C, on both rigid [1] and flexible [2] glasses. Undoped VO₂ films were deposited on commercial Pilkington K-Glass (Low-E glass) exhibited a $T_C = 56°C$, a width of transmittance hysteresis loop $\Delta T_C = 8°C$, luminous transmittance $T_{rlum} = 36\%$ and solar transmittance modulation $\Delta Tr_{sol} = 5\%$, while Mg-doped VO₂ films deposited on the same substrate showed $T_C = 49°C$, $\Delta T_C = 6°C$, $Tr_{lum} = 47\%$ and $\Delta Tr_{sol} = 3\%$. Moreover, undoped VO₂ films which were deposited on flexible Corning glass showed $T_C = 51°C$, $\Delta T_C = 12°C$, $Tr_{lum} = 34\%$ and $\Delta Tr_{sol} = 5\%$.

Finally, undoped VO2 in the form of powder was synthesized by hydrothermal synthesis, using Vanadium pentoxide as Vanadium source and oxalic acid as reducing agent. The VO₂ powder was dispersed in an appropriate solution and drops of it were casted on to glass [3] substrate. The thermochromic films had $T_c = 67^{\circ}C$, $\Delta T_c = 7^{\circ}C$, $T_{rlum} = 25-41\%$ and $\Delta T_{rsol} = 0.35-1.72\%$.

REFERENCES

[1] E. Gagaoudakis, I. Kortidis, G. Michail, K. Tsagaraki, V. Binas, G. Kiriakidis, E. Aperathitis. 2016. Thin Solid Films, 601: 99-105

[2] E.Gagaoudakis, G.Michail, E.Aperathitis, I.Kortidis, V. Binas, M. Panagopoulou, Y. S. Raptis, D.Tsoukalas, G.Kiriakidis. 2017. Advanced Materials Letters, 8(7), 757-761

[3] M.Xygkis, E. Gagaoudakis, L. Zouridi, O.Markaki, E.Aperathitis, K. Chrissopoulou, G. Kiriakidis V.Binas.2019 Coatings, 9 163