Learning Treatment Effects from Multiple Data

Sofia Triantafillou

Assistant Professor, Department of Mathematics and Applied Mathematics, University of Crete, Greece Affiliated Researcher, Institute of Applied and Computational Mathematics, FORTH-GREECE

Association

You are a pulmonologist, and you are offering free screenings in your community

What is the probability that they have COPD?

Association

You are a pulmonologist, and you are offering free screenings in your community

What is the probability that they have COPD?

P(COPD) = 4.8%

What is the probability that they have COPD given that they have blonde hair, a mild cough, and they smoke?

P(COPD) = 4.8%

What is the probability that they have COPD given that they have blonde hair, a mild cough, and they smoke?

P(COPD) = 4.8%

P(COPD|Blonde hair) = 4.8%

What is the probability that they have COPD given that they have blonde hair, a mild cough, and they smoke?

P(COPD) = 4.8%

P(COPD|Blonde hair) = 4.8%

P(COPD|Cough) = 7.2%

What is the probability that they have COPD given that they have blonde hair, a mild cough, and they smoke?

P(COPD) = 4.8%

P(COPD|Blonde hair) = 4.8%

P(COPD|Cough) = 7.2%

P(COPD|Smoking) = 15.2%

What is the probability that they have COPD given that they have blonde hair, a mild cough, and they smoke?

P(COPD) = 4.8%

P(COPD|Blonde hair) = 4.8%

P(COPD|Cough) = 7.2%

P(COPD|Smoking) = 15.2%

P(COPD|Smoking, Cough) = 25.3%

What is the probability that they have COPD given that they have blonde hair, a mild cough, and they smoke?

P(COPD) = 4.8%

P(COPD|Blonde hair) = 4.8%

P(COPD|Cough) = 7.2%

P(COPD|Smoking) = 15.2%

P(COPD|Smoking, Cough) = 25.3%

Association can improve your prediction for a variable of interest.

Association vs Causality

- Had they not been smoking, would they have gotten COPD?
- If you make them stop smoking, will they stop having COPD?
- If you give them anti-cough medication, will they stop having COPD?

Why Causality

Association is NOT causation.

We can use association to predict what will happen if we observe something.

We need causation:

- To understand <u>why</u> something happened.
- To predict what will happen if we intervene and change something.

Association is NOT causality

- In this talk (and often in science), we are talking about probabilistic causality: Setting the value of the cause changes the probability distribution of the effect (outcome).
- Association: What is P(Y= y | X = x)?
- Causality: What is P(Y=y|do(X=x))?

BUT: No association without causation

• Reichenbach's common cause principle:

If X and Y are correlated, X causes Y OR Y causes X OR they share a common cause.

Learning Causality

Example: Does smoking cause chronic obstructive pulmonary disease (COPD)?

1. Take a **random** sample from your population.

1. Take a **random** sample from your population.

2. Randomly split them in **control** and **treatment** groups.

- 1. Take a **random** sample from your population.
- 2. Randomly split them in **control** and **treatment** groups.
- 3. Force control group **not to smoke**, force treatment group to **smoke**.

- 1. Take a **random** sample from your population.
- 2. Randomly split them in **control** and **treatment** groups.
- 3. Force control group **not to smoke**, force treatment group to **smoke**.
- 4. Wait a few years to see who have developed **COPD**.

Randomization

Models considered possible

Randomization

Randomization

Association persists only when the relationship is causal.

Causal Graphical Models

Causal Markov Condition: A variable is independent of its non-effects given its direct causes

Causal Graphical Models

Causal graph

Probability distribution

P(Smoking, Gene X, COPD) = P(Gene X)*P(Smoking|Gene X)*P(COPD|Gene X)

Gene X mutation	Smoking	COPD
No	Yes	No
Yes	No	Yes
No	No	No

Causal Markov Condition:

A variable is independent of its non-effects given its direct causes

Causal Graphical Models

Causal graph

Probability distribution

P(do(Smoking), Gene X, COPD) = P(Gene X)*P(do(Smoking))*P(COPD|Gene X)

Gene X mutation	Smoking	COPD
No	Yes	No
Yes	No	Yes
No	No	No

If you know the causal graph, you can predict the effects of interventions

Learning Causality

Causal graph

Probability distribution

P(Smoking, Gene X, COPD) = P(Gene X)*P(Smoking|Gene X)*P(COPD|Gene X)

Gene X mutation	Smoking	COPD
No	Yes	No
Yes	No	Yes
No	No	No

The field of causal learning (causal discovery and inference) is about learning causal structure and quantifying causal effects from limited or no interventions.

Causal learning from observational vs experimental data

Observational data (e.g., health record data)

Experimental data (e.g., randomized control trial data)

- + Large sample sizes
- + Sampled from the entire population

Biased for causal effect
estimation due to confounders
unless you know the ground truth
causal model.

-Limited sample sizes

-Sampled from selected subpopulations

+ Unbiased for causal effect estimation – high variance estimates due to low sample size

Causal learning from observational vs experimental data

Observational data (e.g., health record data)

Experimental data (e.g., randomized control trial data)

- + Large sample sizes
- + Sampled from the entire population
- Biased for causal effect estimation due to confound unless you know the groun causal model.

-Limited sample sizes -Sampled from selected subpopulations + Unbiased for causal effect variance

Combining observational and experimental data with causal models can improve effect estimation and get the best of both worlds.

low sample size

Summary

 Causal models allow us to formalize and reason with causal relationships, connect observations and experiments, and automate the scientific process.

