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ACTYS is a collaborative project between two top FORTH Institutes:

3 Insti £ Medi . The ACTYS project ranked
stitute of Mediterranean Studies (IMS) 15tin the 2020 FORTH-
> Institute of Computer Science (ICS) Synergy proposal

evaluation ™
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The goal of the project is to develop an integrated methodology for shallow L'
bathymetry retrieval and detailed mapping of coastal benthic cover of the
shoreline
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Motivation

Advanced speCTro-bathYmetric mapping of Shallow seafloor using
UAV imagery and deep learning techniques

Automated seafloor
mapping using

Shallow bathymetry is key
input to:

uncrewed platforms:
> Coastal ff'—-
management/planning > Versatility
projects > Repeatability o

> Ecological mapping

A deep learning approach for:

> Minimizing fieldwork effort
> Maximizing information from input layers
> Landscape-scale mapping of shallow seafloor
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Study areas & data acquisition




Study areas & data acquisition

Drone RGB camera

®* DIJI Phantom4 Pro©

® 20 mPixels

® 1” sensor size

® 120 m survey altitude
® Nadir images
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Source: Burggraaff et al., 2019

USV depth (m)

Uncrewed Surface Vehicle (USV)
with: Sonar sensor / GoPro

waterproof camera

® Sonarmite© BTX single-beam echo-
sounder (SBES)

® Transmitter frequency: 235 kHz

® Sampling rate: 2 Hz

®* Connectivity: Bluetooth with RTK GPS
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Image pre-proceSSing DJI P4P, Green band
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Geometric corrections Radiometric corrections
RGB Image calibration
> Camera calibration > DN to radiance BEFORE 1N
with checkerboard (dark pixel, vignette, exposure, gain, using 7::; :j:j ” “’ :j;: :‘w ’“

.- Pix4D© software)
> Camera position

from EXIF metadata

>> Radiance to reflectance
> Ground control

(with reference reflectance panel in Pix4D©
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points with RTK GPS software)
measurements
onshore Image resampling for noise
reduction AFTER
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Bathymetry prediction

Data Pre-processing

~-

UAV's Logarithmic I 1
tra "“””"K K K Orthomosaic band-ratios 4 ‘
generation CNN model
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Water surface

-

& distance estim A n.n.l ﬁ

] Coast segmentation
Distance from Coast :
Estimated

eIy 7 f bathymetry
Structure from T n
Motion (STV) et

Seafloor

UAV flight and image acquisition UAV images
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Interpolated Depth
{ground truth)

* Architecture that has been successfully applied in related depth estimation
problems (face/hand depth estimation from RGB images).

* Each module consists of Convolutional layers, a bottleneck layer, and
Deconvolutional layers.

* A network with 6 stacked hourglass modules.



Bathymetry prediction

2D sonar data (interpolation) 3D underwater SfM

The multichannel input of the CNN model

consists of several image patches of size 128 x

128 pixels that includes five channels input
rasters:

* three channels rasters for the logarithmic

band-ratios (Blue/Green, Blue/Red and
Green/Red),

* one for the approximate SfM surface,

* and one with the distance from coast

information.
. Training 60%

. Testing 40% 8



Training Dataset

Concept based on Stumpf et al.,
(2003) band-ratio model* :

PROS

> Works well for mixed
seafloor types

> ltis computationally
simple and fast

In(nR(A,))
— — m
In(nR (7))

CONS

* machine learning implementation
using multiple ratios

> Requires input ground-
truth depth data

Relative depth penetration of light > .
wavelengths in clear coastal waters Requires water-column
transparency



Training/testing datasets

3D SfM reconstruction (drone)

®* Minimal effect of refraction (very shallow
water, nadiral images)
® Use as explanatory variable

® Requires seafloor types with texture (e.g.:

®* |n-situ depth (+10 cm) rocky reefs)

® Interpolation for creating train (ground
truth) patches for deep network

® Qutput validation on original soundings

2D sonar measurements (USV)

Original soundings
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Training/testing datasets

3D SfM reconstruction (underwater video)

® Sonar data augmentation (MBES of the poor)

® Detailed seafloor texture

»
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® Refraction-free

)
.,y\))n)"




Experimental Evaluation

Comparison of our CNN model with
conventional Machine Learning approaches.
(Random Forest, Support Vector Machines)

Ablation study to show the benefits
of the architecture choices and input

Our pipeline, Our pipeline, Our pipeline,
rasters. with CNN with RF with SVM
Most related work approaches (full model)
follow a Single Stack CNN
architecture model. RMSE 0.346m 0.432m 0.599m

R 89.4% 84.1% 67.5%
Single Stack Huurglass model
Rasters used EMSE R*
RGB 0.66 m 62.29%
RGB + 5fM 0.62 m 67.7% .
We trained our CNN model on all patches of each study area and
RGE * DistCoast 0-51m 74.6% then we applied the model on the remaining two areas again for all
RGB + 5fM + DistCoast 0.43 m 85.4% their image patches
Full Stack Hourglass model
Trained on Stavros Trained on Kalamaki | Trained on Elafonisi

RGB 0.4% m 79.5%

Tested on Stavros 0.043m 0.753m 0.698m
RGB + 5fM 0.42 m 81.4%

Tested on Kalamaki 1.754m 0.248m 1.058m
RGB + DistCoast 0.42 m 83.8%

Tested on Elafonisi 0.630m 0.773m 0.138m
RGB + 5fM + DistCoast 0.35m §9.4%
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Assessment of PRISMA Level-2 Hyperspectral Imagery for Large Scale
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Extracting high resolution, shallow bathymetry from drone-based imagery using empirical methods is a novel
approach that gains increasing interest. However, due to the rapidly expanding character of this field, there are
not sufficient guidelines for optimal pre-processing of drone-based imagery regarding bathymetry retrieval. This
study explores the suitability of imagery resulted from commenly used drone cameras in terms of producing good
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\

correlation with ground-truth depth measurements obtained from an unmanned surface vehicle (USV). Thus,
imagery with similar spectral responses, from two commercial sensors (DJI Phantom 4 Pro and MicaSense-
RedEdge multispectral camera), is examined along with and without radiometric corrections applied, using
166 proprietary software. The results show that radiometric image corrections using a reference reflectance panel,
- greatly enhance the correlation coefficient between bathymetry data and single-band or band-ratio reflectance
6"’ Research Article mosaics at two study areas with mixed seafloor types. However, it was observed that the Red band and its
3 1 1 r}, associated logarithmic band ratios (Blue/Red, Green/Red) from both sensors show good correlation with depth as
CrossRef GeomorphomEtrllc analySlS ?f nearSl}ore Sedlmenta A well, regardless of radiometric corrections. This result applies mainly to areas with favourable optical properties of
ckationsitoidate bedfol‘ms from hlgh-resolutlon multl-temporal Satelllte_ water. This study suggests that radiometric calibration is crucial in empirical bathymetry retrieval from drone-
0 . based imagery. Furthermore, radiometric corrections applied on common Red, Green, Blue (RGB) cameras
Altmetric derlved bathymet]_'y provide useful reflectance mosaics at lower costs compared to multispectral cameras.
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Conclusions & Future goals

> Accurate depth reconstruction

with minimal need for in-situ >App|y pre-trained model in
data- low cost unknown areas with similar water
properties
> Seamless bathymetry prediction
over different areas/seafloor > Unify entire processing chain into
types a single software tool
> Low RMSE values (<0.5m) > Require greater amount of

ground truth data
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Looking forward to future collaborations and extension of the project
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