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Mediterranean biome

Climate change has multiple
impacts on biodiversity,
jeopardizing the efficiency of static
protected area networks at the

global scale [2,3]
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i and j are the baseline and future cells, m is the bioclimatic variable and
Xk i, Xi j are the corresponding (baseline and future) mean of each variable

Rao’'s quadratic entropy index (6,71
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Me::;::[ea" 3 | Me:uﬁ;fggfan  Mediterranean mountainous areas will probably

LSGeeE | N show high climatic velocity within the next 50 years,
while mid-altitude areas will more probably host
climatic refugia
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Systematic conservation planning algorithms s

We identify potential future climatic refugia that have
two important properties: (i) low climatic velocity,
and (ii) high spatial climatic heterogeneity (7,9]

 Highly rugged areas, such as gorges, will probably provide
favorable conditions, serving as biodiversity refuges, even
in low altitudes.

* Climatic refugia in Greece, Italy and the south-
eastern part of France can be considered as
“low-regret” climatic refugia, under both high
and low emission scenarios

o RESULTS o RESULTS

East Mediterranean countries had the highest proportion The current protected area networks capture future climatic
of climatic refugia [10] refugia only partially and disproportionally across countries [10]
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Protection gaps : The proportion of climatic refugia located inside existing PAs 5 Protection gaps : Greece has the highest coverage of climatic

increased over altitude and slope, but less rugged and low to mid elevation climatic B _,,.3ﬁ refugia in the Mediterranean Europe but one of the lowest
refugia overlapped to a much smaller extent with existing PAs [10] i T el percentages of climatic refugia under protection [10]
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