Economic Aspects of Information Systems

Christos H. Papadimitriou
UC Berkeley

Google christos
The old information systems

I must provide accurate data, expressive interfaces and fast query evaluation to the company’s employees

EMP SAL DEPT MNGR
The new information systems

I want to be the most widely used and trusted search engine. And to make a buck.

I want to be top ten in Google.

I want the cheapest, most reputable printer supplier in New Jersey.

User

Google

Data
Logic databases

Canfly(x, y) :- Canfly(x, z), Flight(z, y).
Canfly(x, y) :- Flight(x, y).

• Some of the most elegant work in Database Theory during the 1980s
• Never picked up by practitioners
• Main criticism: “Good for poorly designed databases”
The return of logic

• The Internet is a deliberately badly designed database.

• e.g.:

spam(p,n,s) :- spam(p’,n’,s),address(p,n,s), n= n ± 1.
spam(p,n,s) :- spam(p’,n’,s’),carpool(p,p’),
address(p,n,s).
spam(christos, 303, badlands).
What is privacy?

• one of society’s most vital concerns
• central for e-commerce
• arguably the most crucial and far-reaching current challenge and mission of CS
• least understood scientifically (e.g., is it rational?)

• see, e.g., [www.sims.berkeley.edu/~hal, ~/pam],

• [Stanford Law Review, June 2000]
some thoughts on privacy

• also an economic problem
• surrendering private information is either good or bad for you
• example: privacy vs. search costs in computer purchasing
thoughts on privacy (cont.)

• personal information is intellectual property controlled by others, often bearing negative royalty

• selling mailing lists vs. selling aggregate information: false dilemma

• Proposal: Take into account the individual’s utility when using personal data for decision-making
e.g., marketing survey

- company’s utility is proportional to the majority
- customer’s utility is 1 if in the majority

how should all participants be compensated?

e.g. total revenue: $2m = 10$
Collaborative Game Theory

• How should A, B, C split the loot (=20)?
• We are given what each subset can achieve by itself as a function v from the powerset of \{A,B,C\} to the reals
• $v(\emptyset) = 0$

Values of v

- A: 10
- B: 0
- C: 6
- AB: 14
- BC: 9
- AC: 16
- ABC: 20
first idea (notion of “fairness”): the core

A vector \((x_1, x_2, \ldots, x_n)\) with \(\sum_i x_i = v([n])\) (= 20) is in the core if for all \(S\) we have

\[x[S] \geq v(S) \]

In our example: A gets 11, B gets 3, C gets 6

Problem: Core is often empty (e.g., \(AB = 15\))
second idea: the Shapley value

\[x_i = E_{\pi}(v[\{j: \pi(j) \leq \pi(i)\}] - v[\{j: \pi(j) < \pi(i)\}]) \]

(Meaning: Assume that the agents arrive at random. Pay each one his/her contribution. Average over all possible orders of arrival.)

Theorem [Shapley]: The Shapley value is the only allocation that satisfies Shapley’s axioms.
In our example...

• A gets:
 \[\frac{10}{3} + \frac{14}{6} + \frac{10}{6} + \frac{11}{3} = 11 \]

• B gets:
 \[\frac{0}{3} + \frac{4}{6} + \frac{3}{6} + \frac{4}{3} = 2.5 \]

• C gets the rest = 6.5

• NB: Split the cost of a trip among hosts…

Values of \(v \)

• A: 10
• B: 0
• C: 6
• AB: 14
• BC: 9
• AC: 16
• ABC: 20
e.g., the UN security council

- 5 permanent, 10 non-permanent
- A resolution passes if voted by a majority of the 15, including all 5 P
- \(v(S) = 1 \) if \(|S| > 7\) and \(S \) contains 1, 2, 3, 4, 5; otherwise 0
- What is the Shapley value (~power) of each P member? Of each NP member?
e.g., the UN security council

- What is the probability, when you are the 8th arrival, that all of 1,…,5 have arrived?
- Ans: \(\frac{\text{Choose}(10,2)}{\text{Choose}(15,7)} \sim .7\% \)

Therefore, \(P \neq NP \)
third idea: bargaining set
fourth idea: nucleolus

.
.
.

seventeenth idea: the von Neumann-Morgenstern solution

[Deng and P. 1990] complexity-theoretic critique of solution concepts
Applying to the market survey problem

• Suppose largest minority is \(r \)

• An allocation is in the core as long as losers get 0, vendor gets \(> 2r \), winners split an amount up to twice their victory margin

• (plus another technical condition saying that split must not be too skewed)
market survey problem: Shapley value

• Suppose margin of victory is at least $\varepsilon > 0\%$
• (realistic, close elections never happen in real life…)
• Vendor gets $m(1+\varepsilon)$
• Winners get $1+\varepsilon$
• Losers get ε
• (and so, no compensation is necessary)
e.g., recommendation system

- Each participant i knows a set of items B_i
- Each benefits 1 from every new item
- Core: empty, unless the sets are disjoint!
- Shapley value: For each item you know, you are owed an amount equal to $1 / \text{(#people who know about it)}$

--i.e., *novelty pays*
e.g., collaborative filtering

• Each participant likes/dislikes a set of items (participant is a vector of 0, ±1)

• The “similarity” of two agents is the inner product of their vectors

• There are k “well separated types” (vectors of ±1), and each agent is a random perturbation and random masking of a type
collaborative filtering (cont.)

• An agent gets advice on a 0 by asking the most similar other agent who has a ± 1 in that position.

• Value of this advice is the product of the agent’s true value and the advice.

• How should agents be compensated (or charged) for their participation?
Theorem: An agent’s compensation (value to the community) is an increasing function of how typical (close to his/her type) the agent is.
The economics of clustering

• The practice of clustering: Confusion, too many criteria and heuristics, no guidelines

• The theory of clustering: ditto!

“‘It’s the economy, stupid!’”
[Kleinberg, P., Raghavan STOC 98, JDKD 99]
Example: market segmentation

Segment monopolistic market to maximize revenue

\[q = a - b \cdot p \]
or, in the a – b plane:

Theorem: Optimum clustering is by lines through the origin (hence: $O(n^2)$ dynamic programming)
So...

- The new databases are selfish agents, and you understand them through economics
- Privacy has an interesting and central economic aspect
- Which gives rise to neat math/algorithmic problems
- And clustering is a meaningful problem only in a well-defined economic context