Innovation, Components, and Complements

Hal R. Varian
UC Berkeley

July 3, 2003
Overview

- What can we learn from history?
 - Technology revolutions
 - Nature of innovation
 - Business problems
 - Policy problems
Stylized facts about innovation

- Importance of *simultaneous innovation*
- Critical role of
 - Components
 - Complements
 - Standards
- History can motivate ways to think today’s business strategy
Simultaneous innovation

- Historical
 - Howe/Singer …
 - Edison/Swan …
 - Bell/Gray …
- Recent
 - Digital computer
 - Personal computer
 - Dot coms
Why simultaneous innovation?

- **Demand side**
 - Recognized need
 - Problem seems solvable

- **Supply side**
 - Standardized components
 - Parallel experimentation
 - “Combinatorial innovation”
 - Subsequent development of complements
Examples

- Historical
 - Standardized parts in the 1880s
 - Wright Brothers in early 1900s
 - Edison Menlo Park laboratory

- Recent
 - Integrated circuit
 - Web components
 - Particularly rapid innovation due to…
Components and complements

- Components
 - Standardized interface, ubiquitous, cheap
 - Often developed for some other purpose
 - Part of a more complex system
 - Examples: screws, chips, TCP/IP, etc.

- Complements
 - Value to user depends on system: DVD player+disks, autos+gasoline, 3G+apps
 - Often components assembled by manufacturer, complements assembled by user (but many exceptions)
Complements

Supply side: cheaper to produce one product if also produce other
- Economies of scale: decreasing unit costs
- Economies of scope: shared facility

Demand side: value of one product is enhanced by other
- Scope: hamburger+catsup, VRC+tapes
- Scale: fax machine+fax machine

Book to read: Brandenburger and Nalebuff: *Co-opetition*
Consumption complements

- Complementary products: value to user depends on whole system
 - Radio/TV + content
 - DVD player + disks
 - Computer + storage

- Fundamental questions
 - How is coordination accomplished?
 - Chicken and egg problem with new system
 - Technology evolution with existing system
 - Who does “system integration”?
 - How to divide value up among complementors?
Examples from Silicon Valley

- Question about coordination
 - 3Com: “must align with others”
 - Adobe: works with printers, integrators, VARs, CPU manufacturers
 - Juniper: other network manufacturers, other layers
 - Seagate: “drives are always part of a larger system”

- Moore’s Law as coordination device to avoid bottlenecks for technology treadmill?
Working with complementors

- Two sorts of problems
 - Coordination
 - Everyone have same objectives, major problem is in organization and management
 - Incentives
 - Different objectives lead to working at cross-purposes
 - Normal case is a mixture of two problems
Pure coordination problems

- A natural leader emerges
 - E.g., a system integrator, or someone who controls a standard or bottleneck
 - Extremely powerful position (Microsoft)
 - Counterfactual history: what if IBM had used proprietary hardware in PC, and encouraged competition for OS?

- One side absorbs other (merge or acquire)
 - But can be hard to succeed due to differences in technology
 - Sony/Columbia example
 - AOL-Time Warner
Coordination technology

- Coordination is easier now because of technology
 - Fax, email, attachments, intranet, etc.
 - Databases: Pixar example

- Impact on boundaries of firm?
 - Lower communication cost means…
 - Easier to coordinate across firms
 - But also easier to coordinate within firm (history)
 - High-powered incentives across separate firms
 - Everybody likes competition among suppliers…
 - Answer: will the good/service being spun off be supplied competitively?
 - Depends on demand/supply side economies of scale…
Incentive problems

- Two problems (among many)
 - Price/quality choices
 - Holdup

- Other problems for some other time
 - Channel conflict
 - Information sharing
Example: pricing

- Two components to system, e.g., hardware/software
- Cut price of hardware, increases sales of software and vice versa
- Not necessarily taken into account in price-setting calculation by single firm
- Result: system price is too high, *both* companies benefit from both reducing price
 - Consumers benefit too
 - Coordinating prices of complements is a win all the way around
Pricing complements

- Value to user depends on all components
 - Left shoe + right shoe, hardware + software, DVD player + disks
- So demand depends on sum of prices
- Revenue = $p_1 \cdot D(p_1+p_2)$
 - Cutting your price may raise revenue
 - Both cutting prices raises revenue for each
 - Other firm cutting its price raises your revenue the most! How to accomplish this?
 - Big win to coordinating “quality” as well
 - Quality of system may depend on $\min(q_1, q_2)$, as in a network
Solution: ways to cut complement’s price

- Integrate: set price yourself
- Negotiate: I’ll cut mine if you cut yours
- Collaborate: e.g., revenue sharing
- Nurture: work with them to lower costs
- Commoditize: make their industry more competitive
Cut complement’s price: integrate and negotiate

- **Integrate**
 - One firm sells both hardware and software (e.g., ethernet cards and drivers)
 - Also important for quality reasons (e.g., Sun)
 - Problems
 - Complexity management
 - Core competency

- **Negotiate**
 - DVD Forum: negotiated to push prices down
 - Note: coordination/integration of prices is a win for both consumers and producers. Antitrust implications.
Cut complement’s price: nurture

- Improve quality of complements
 - Microsoft Windows Hardware Quality Labs
 - Cisco Certified Internetwork Expert
 - Auto industry working with suppliers/complementors

- Push costs of complementors down
 - Standardize
 - Communicate effectively
 - Supply chain management, etc.
Cut complementor’s price: collaborate

- Revenue sharing
 - VCR “guaranteed in stock”
 - Boeing 747s
 - RFid tags
- Need monitoring/tracking technology
Cut complement’s price: commoditize

- Hardware maker wants cheap software, software maker wants cheap hardware
- How to achieve?
 - Push for standards in complementor’s industry
 - Demonstration projects
 - Encourage competition
 - Enter yourself to jump start industry
 - Minority investments
- Examples
 - Early history of radio, RCA, AT&T
 - Wintel: extraordinarily productive, necessarily tense
 - Killer app for broadband (P2P?)
Problem: hold-up

- One complementor may try to hold up the other (put them in a position where they have no choice and extort),
 - Unilaterally raise price of critical component
 - Assert intellectual property rights on key component
 - “Lowball the bid and make it up on change orders”
Solutions to hold up

- Contracts
 - But there are negotiation/verification costs

- Commitment device
 - Posting a bond

- Dispute resolution procedures
 - Binding arbitration

- Second sourcing
 - Creates competition

- Repeated interaction

- Reputation
Networks: a kind of system

- Value of technology depends on number of users (aka Metcalfe’s Law)
- Direct network effects
 - Fax machine + fax machine
 - Email + email
- Indirect network effects (complements)
 - Web browser + server
 - Intel PC + Windows OS
Network effects, cont.

- Economics literature
 - Rohlf: Critical mass
 - Katz and Shapiro: Strategy to achieve critical mass

- Examples of network effect
 - eBay
 - Visa

- How to get to critical mass [details follow]
 - First mover (or even better: fast follower)
 - Penetration pricing
 - Expectations management
 - Alliances
Penetration pricing

- Subsidize early adopters
 - Introductory pricing
 - Favored groups (e.g., NSFNET and Internet subsidies to universities)
- Give away bundled samples of complement
 - VCRs + video clubs, DVDs
Expectations management

- Reputation, vaporware, pre-announcement
- Build industry alliance (Java)
- Don’t allow fragmentation (Divx)
- Synchronize product introduction
- Solve standardization, complements pricing problem

Examples
- How to do it: DVD
- How not to do it: eBooks
Demand and supply (standard case)

- Suppose consumers have value $v \sim U[0,1]$ for good with price p
 - Buy if $v > p$
 - So demand function: $x = 1 - p$

- Sellers can produce at constant marginal cost c, so price must $= c$

- So Demand = Supply implies $x = 1 - c$

- Standard dynamics: demand $>$ supply \rightarrow quantity produced increases
Demand and supply

![Diagram showing the relationship between price and quantity, with a downward-sloping demand curve and a horizontal supply curve at price C. Arrows indicate price and quantity changes.]
Network good

- Value depends on “standalone value” and number of adopters
 - E.g., value = vn where v~U[0,1]
 - Let value of “marginal adopter” be v*
 - Marginal person just indifferent: v*n=c
 - Everyone with value greater than v* adopts, so n=1-v*, or equivalently v*=1-n
 - Substitute to find “demand=supply” condition (1-n)n=c
Network dynamics
Standardization and interconnection

- If value depends on size, interconnection is important strategy
 - socially valuable
 - valuable to customers, new entrants, complementors
 - may or may not be good for incumbents

- Your value = your share × value of market[n]
Example: standards in auto industry

- Auto industry
 - 1904-1908: 240 companies entered auto industry (suppliers and assemblers)
 - 1910: recession
 - Ford pulled ahead by mastering mass production

- Standardization
 - Suppliers: wanted stability
 - Assemblers: wanted economies of scale
 - Solution: Society of Automotive Engineers

- Problem
 - Dominant incumbents: Ford and GM
Effects of standards

- Competition, learning curve and scale economies: all reduce costs
- Risk reduction (shocks, holdup, etc.)
- Provides components for innovation
- Problem with conflicting goals:
 - Want other guy’s stuff to be standardized
 - You want your stuff to be proprietary
Types of standards

- Formal standards setting bodies (IEEE, ITU, EIA, etc.)
- Ad hoc standards setting bodies
- Proprietary “standards”
Issues

- Tradeoff between too much and too little control
 - One firm controls a standard
 - But can they get away with it? Micropayments.
 - No one controls a standard
 - Fragmentation. Unix

- Speed/Quality
 - Standards bodies v ad hoc standards groups
 - Premature standardization
 - Standards wars
How to get an edge in standardized industry?

- Manufacturing skills (HP)
- Proprietary extensions to standard
- Be first to market, ride learning curve
- Understand technology/market better
- Be complementary to something cheap and ubiquitous
High-tech challenge today

- “What do users want?”
 - To do the same things better, cheaper, faster, etc.
 - To do new things

- Biggest challenge facing industry: complexity management
 - Solution requires better needs assessment, human interface, design, testing, etc.
 - Lesson of Bose speakers
 - What do users want from IT?
Why simplicity?

- Users *are* the bottleneck; no Moore’s Law for neurons
- Systems will work better if weakest link is better (interface with user)
- One solution: self-contained, pre-configured or auto-configured systems
Pre-configured systems

- Give up customization, reduce diversity
- Impact on innovation?
 - Makes it harder to innovate in some ways
 - PC as generic platform for experimentation
 - Easier to innovate in others
 - Yesterday’s system becomes today’s component
 - Starts innovation all over again!
Take away questions

- Who are your complementors?
- Look at the system from the end-user’s point of view. Where are the bottlenecks?
- How can you get the producers of components/complements to improve quality, lower price?
 - Integrate, collaborate, negotiate, nurture, commoditize, etc.
- How can you coordinate actions and align incentives better with complementors?