The Social Cost of Sharing

Hal R. Varian
hal@sims.berkeley.edu

University of California, Berkeley
Introduction

- Often IP is shared via libraries, license servers, video rental stores, Napster, etc.
- If IP is intended to be shared it is often priced higher than IP meant to be consumed individually.
- Sometimes price discrimination can be used, but if this is infeasible flat pricing generally reflects dominant use.
Questions

• High price encourages sharing \rightarrow sharing encourages high prices. If sharing is costly, equilibrium is inefficient.

• What happens when producers set prices to discourage sharing?

• What about government penalties to discourage sharing?

• What kinds of IP are not produced due to sharing?
Baseline case

\(n \) consumers, identical value \(v \). IP costs \(D \) to develop, zero to distribute. A price \(p \) is viable if:

(1) \(v \geq p \)
(2) \(p \geq d \),

where \(d = D/n \).

Two interesting viable prices: the monopoly price \(p_m = v \) and the zero profit price \(p_z = d \).
Sharing

- Groups of size k form, each individual paying p/k. Sales are n/k.
- Transactions cost to sharing of t
- Viability now requires

\[v - p/k - t \geq 0 \]
\[p \frac{n}{k} \geq D. \]

- So p is viable if:

\[(v - t)k \geq p \geq dk \]
Dynamics

- Monopoly case: $p_m = (v - t)k$
- Monopoly dynamics: At p_m people may want to share. This pushes price up even further. In equilibrium consumers end up with zero surplus, monopolist is worse off.
- Zero-profit dynamics: price is pushed up by sharing, consumers made worse off.
Figure 1: Shaded area indicates products that won’t be produced due to sharing.
Limit pricing monopolist

• Suppose monopolist sets price first in order to discourage group formation. Must choose p so that:

$$\frac{p}{k} + t \geq p.$$

• This means $p_\ell = \frac{k}{k-1} t$.

• This is more profitable than allowing the group to form when

$$\left(\frac{2k - 1}{k - 1} \right) t \geq v.$$

• LHS varies between $2t$ and $3t$.
Social cost of sharing

Figure 2: Shaded area indicates lost value.
Summary of limit pricing case

• No social cost to sharing for goods with low value, low development costs, or large numbers of users. Threat of sharing makes monopolist cut its price.

• Limit pricing doesn’t work for zero-profit producer. Groups form and make themselves worse off.
Penalties for sharing

- State or monopolist can impose a cost c on those who share. Initially look at case where $c < v - t$. Replace t by $t + c$ to find Nash equilibrium:

\[
(5) \quad p_m = (v - t - c)k
\]

\[
(6) \quad \pi_m = (v - t - c)kn - D.
\]

- If $v \geq t + c$ then profit is *decreasing* in c
- In this case, c is not large enough to discourage sharing, but makes monopolist worse off.
Penalties for sharing, cont.

• If $c > v - t$ or limit price monopolist, we have

$$p_{\ell} = \frac{k}{k-1}(t + c)$$

(7)

$$\pi_{\ell} = \frac{k}{k-1}(t + c)n - D.$$

(8)

• Monopolist wants $c \geq v - \frac{k-1}{k}t$. Monopolist prices at v, no groups form, outcome is efficient.
Endogenous groups

- Suppose t depends on size of group, e.g.,
 $$t = w(k - 1).$$
- Optimal group size solves
 $$\min_k \frac{p}{k} + w(k - 1).$$
 - Answer is $k = \sqrt{p/w}$
 - Minimized value of t is $2\sqrt{pw} - w$.
- A price p is viable if it satisfies:

 $$(9) \quad v - 2\sqrt{pw} + w \geq 0,$$
 $$(10) \quad \sqrt{pw} \geq d.$$
Social cost of sharing

Monopoly price is

\[p_m = \frac{1}{w} \left(\frac{v + w}{2} \right)^2 \]
Summary of endogenous groups case

- Low-value, low-cost goods are not worth sharing and will be produced anyway
- High-value goods \((v > 2d)\) will be produced and shared
- Limit pricing is irrelevant in this case