RECAP FROM MONDAY AND TUESDAY LECTURES

Nucleo-cytoplasmic transport factors:

interact with the target macromolecule (signal recognition) interact with the NPC (nucleoporin Phe - Gly repeats)

Nucleocytoplasmic transport factors:

Karyopherins (importins/exportins) import proteins / export tRNA, snRNA, rRNA regulated by the GTPase Ran

NTF2 import Ran

Search for mRNA export factors

Both TAP and p15 are essential for bulk mRNA export

Knockdown of *D.melanogaster* TAP or p15 results in nuclear accumulation of bulk polyadenylated RNAs

oligo(dT) *in situ* hybridization poly-(A)⁺ DNA nucleoporins The TAP subunit of the mRNA export receptor is conserved (human NXF1 and yeast Mex67)

The p15 subunit of the mRNA export receptor is not conserved (human p15 / yeast Mtr2)

How does it recognize RNA cargoes? How does it recognize nuclear pore complexes? What is the function of p15? Mtr2?

TAP C-terminal portion: interacts with nucleoporins and p15

1.9Å resolution *R*free 22.5 %

TAP-p15 heterodimer (Fribourg et al., 2001)

NTF2-NTF2 homodimer (Stewart et al., 1998)

Structural similarity of NTF2-like domains

insertion

22% seq.id. with NTF2 rmsd 1.9Å (113 Cα) 13% seq.id. with NTF2 rmsd 2.5 Å (95 Cα)

UBA-like domain function: NPC binding Δ UBA-like domain: 10% export activity

△NTF2-like domain: no export activity NTF2-like domain: function ????

Extrapolate functional similarity from structural similarity?

NTF2 is the Ran import factor binds RanGDP binds nucleoporins

Ran regulator to most transport pathways ?mRNA export pathway?

TAP structure is incompatible with Ran binding

NTF2

TAP

p15 structure is incompatible with Ran binding

NTF2

The Ran-binding pocket of NTF2 is occluded in p15

TAP NTF2-like domain binds Phe-Gly repeat nucleoporins

2.8 Å *R*free 26.9%

TAP:p15 directly interact with Phe-Gly containing nucleoporins via two structurally unrelated domains

Recognition of nucleoporins: Phe residue: hydrophobic interactions Gly residue: conformational flexibility

TAP has two nucleoporin binding sites

Mutation of nucleoporin-binding sites: nuclear envelope localization

p15 is recruited to the NPC by TAP

Nuclear envelope localization GFP-TAP zz-p15

salt bridge swap

wt

R134D

R134D

the function of p15 is structural

TAP is conserved from lower to higher eukaryotes Human TAP and yeast Mex67 (NXF)

The smaller subunit of the mRNA export factor is not conserved Human p15 and yeast Mtr2: functional homologues no sequence homology

Fribourg and Conti, 2003

Human p15 and yeast Mtr2: structural homology

TAP N-terminal portion: cargo binding

Cellular mRNA (indirect binding via adaptors) Viral CTE RNA (direct binding to human TAP)

RNA binding domain of TAP: canonical structure, non canonical sequence

LRR binding domain of TAP: structural homology to U2A'

4 leucine-rich-repeats in TAP

5 leucine-rich-repeats in U2A' (Price et al., 1998)

Structural homology

TAP RNP-LRR domains

RNP-LRR domains binding to U2 snRNA (Price et al., 1998)

TAP RNP and LRR domains bind a viral RNA directly

TAP: RNP and LRR domains required (*in cis*) mapped the surface by mutagenesis

Spliceosomal complex (Price et al., 98)

+TAP

+TAP

Cellular mRNA

TAP: RNP not strictly required (not conserved) conserved LRR domain as an adaptor?

mRNA export receptor TAP:p15 heterodimer

TAP: conserved and essential LRR, NTF2-like and UBA-like domains recognizes Phe-Gly nucleoporin repeats at two sites
The function of p15 is structural in maintaining a proper fold (Mtr2?)
It is not regulated by Ran
mRNA release?
mRNA binding? Adaptor proteins?

Adaptors: the exon-exon junction complex?

EJC: protein complex deposited upstream of splice junctions

EJC proteins in mRNA metabolism: splicing, export, NMD, localization

Mago and Y14: at the core of the EJC form a complex in vitro and in vivo from sequence: Y14 contains an RBD involved in *oskar* mRNA localization involved in nonsense mediated mRNA decay

Normal case: displacement of EJC proteins: no NMD, stable mRNA

Aberrant case (PTC): recruitment of NMD factors: mRNA degradation

Mago-Y14 complex

Mago is sandwiched between two domains of Y14

The RBD of Y14 binds the protein Mago

tight interaction interface

How does it contact RNA?

How does it work in nonsense-mediated mRNA decay?

Mago-

NMD is affected by disruption of Y14 - Mago heterodimer

A highly conserved surface

A highly conserved surface involved in NMD

A highly conserved surface involved in NMD

Both Y14 and Mago are required for nonsense mediated mRNA decay

Provide a binding platform for recruitment of the NMD machinery

Same surface is involved in both NMD and oskar mRNA localization

Current view of mRNA export

Elena Conti Sebastien Fribourg Genaro Pimienta Fulvia Bono Erika Liker Elena Fernandez

Elisa Izaurralde Isabelle Braun David Gatfield

Thanks to: N. Gerhing, A. Kulozik, M. Hentze