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Autonomous Navigation  
Problem Statement

The ability of robots to navigate safely 
and reliably within their environments

The ability of robots to navigate safely 
and reliably within their environments

Operation in industrial environments

Tour-guiding visitors in museums/exhibition sites

Helping in household tasks

Exploring unfriendly environments 
(volcanoes, sewer systems, underwater)

Space applications

…. (the list goes on)
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Historical Walkthrough

… in the beginning:
Robotics in ancient 
times - Talos

… and then: a multitude 
of robotic systems;
Industrial robots
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More Recently

Trend towards
intelligent systems

Trend towards
intelligent systems

Basic keyword:
autonomous systems

Basic keyword:
autonomous systems
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Existing, non-autonomous 
systems…
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... and non-existent, fully 
autonomous robots
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General research goal

Development of robotic systems able to exhibit
autonomous behavior

in complex and dynamic environments

Development of robotic systems able to exhibit
autonomous behavior

in complex and dynamic environments

Cognition Action

LearningPerception

System
Architecture
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An Interesting Research Area

Theoretical interest…
Mathematical and computational 
modeling of perception and action

… with important applications
“Intelligent” robotic wheelchairs
Robotic tour-guides in museums 
and exhibition sites
Exploration of unknown and, 
possibly hostile, environments
Routine tasks (surveillance, 
cleaning, etc)
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The above are based to a great extent on the
ability of autonomous navigation

The above are based to a great extent on the
ability of autonomous navigation

Research Directions
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Given
An environment 
representation - Map C

G
Knowledge of current 
position C

A path has to be planned 
and tracked that will take 
the robot from C to G

Target position G

Autonomous Navigation
Research Directions
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During execution (run-
time)
Objects / Obstacles O 
may block the robot C

G
The planned path is no-
longer valid
The obstacle needs to be 
avoided and the path 
may need to be re-
planned

O
X

Autonomous Navigation
Research Directions



July 2006 Panos Trahanias - Onassis Lecture Series 12/93

Navigation Issues

Important questions (Levitt et al ’91) Important navigation issues

Where am IWhere am I

Where are other places 
relative to me

Where are other places 
relative to me

How do I get to other 
places from here

How do I get to other 
places from here

Robot localizationRobot localization

Map buildingMap building

Path/motion
planning

Path/motion
planning
Wednesday
Wednesday
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Navigation Issues – Underlying HW

Interaction

Processing 
Power

Motors

Sensors
Stereo vision

Sonars

Bump sensors
Infrared sensors
Laser scanner
Bump sensors
Sonars
Odometry

Communications

Laser Scanner
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Range Sensor Model

Laser Rangefinder
Model range and angle errors. 
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Need for Modeling

Extremely Complex 
Dynamical System

Need for Appropriate Modeling

Robot
Environment+
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Markov Assumption

xt-1 xt xT

y1 yt-1 yt yT

x1 X

Y

O

State depends only on previous state and 
observations 
Static world assumption 
Hidden Markov Model  (HMM)

( ) ( ) ( ) ( )∏
=

−

T

t
tttt xyPxxPxyPxP

2
1111( )Tt yyyxP ,...,, 21

Bayesian estimation: Attempt to construct the posterior distribution of 
the state given all measurements
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A Dynamic System

xt-1 xt xT

y1 yt-1 yt yT

x1

)|(         )( 11 −− ↔= kkkkk pf xxxx

)|(         )( kkkkk ph xyxy ↔=

•Most commonly - Available: 

•Initial State

•Observations 

•System (motion) Model

•Measurement (observation) Model 

1 1( )P↔x x
1.. Ty y
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Inference - Learning

Localization (inference task)
Compute the probability that the robot is at pose z at time t 
given all observations up to time t (forward recursions only)

( )tt yyyzxP ,...,, 21=

Map building (learning task)
Determine the map m that maximizes the probability of the 
observation sequence.

( )T
m

yyymPm ,...,,maxarg 21
* =
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( ) ( ) ( ) ( )∫ −−− ===
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Belief State

Discrete representation
Grid (Dynamic) (Dynamic) Markov localization 

(Burgard98)
Samples Monte Carlo localization 

(Fox99)
Continuous representation

Gaussian distributions Kalman filters (Kalman60)

How is the prior 
distribution represented?

How is the posterior 
distribution calculated?
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Example: State Representations  
for Robot Localization

Grid Based 
approaches 
(Markov 
localization)

Particle Filters 
(Monte Carlo
localization) Kalman 

Tracking

Discrete Representations Continuous Representations
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Kalman Filters - Equations
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A: State transition matrix (n x n)

C: Measurement matrix (m x n)

w: Process noise (є Rn), 
v: Measurement noise(є Rm)
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Kalman Filters - Update
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Kalman Filter - Example
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Kalman Filter - Example
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Kalman Filter - Example

Γ+=

+=

−
−

−
−

T
tt

tt

AAPP

BxAx

1

1ˆˆPredict



July 2006 Panos Trahanias - Onassis Lecture Series 26/93

Kalman Filter - Example
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Kalman Filter – Example 
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Kalman Filter – Example 
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Non-Linear Case

• Kalman Filter assumes that system and measurement processes 
are linear

• Extended Kalman Filter -> linearized Case
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Example:
Localization – EKF

Initialize State 
Gaussian distribution centered according to prior knowledge 
– large variance

At each time step:
Use previous state and motion model to predict new state

(mean of Gaussian changes - variance grows)

Compare observations with what you expected to see from 
the predicted state – Compute Kalman Innovation/Gain

Use Kalman Gain to update prediction
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Project State estimates 
forward (prediction step)

Predict measurements

Compute Kalman Innovation 

Compute Kalman Gain

Update Initial Prediction



July 2006 Panos Trahanias - Onassis Lecture Series 32/93

EKF – Example
motion model for mobile robot

Synchro-drive robot
Model range, drift and turn errors

φ

θ

r
φ

θ

r

φ

θ

r
φ

θ

r

⎥
⎦

⎤
⎢
⎣

⎡
+

=Σ
tdtt

tr
a dkfk

dk
t 0

0

T
aaa

T
xxxx FFFF

ttt
∇Σ∇+∇Σ∇=Σ

+1

( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
−
−

==
+

tt

ttt

ttt

txx

d
dy
dx

aFExp
tt

θ
θ
θ

μμ )cos(
)sin(

),(
1



July 2006 Panos Trahanias - Onassis Lecture Series 33/93

EKF – Example
simulated run
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Bayesian Methods
Discrete Representation

Probabilistic localization –
the case of global 
localization
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Bayesian Methods
Discrete Approaches

Grid-based 
representation of 
the state-space
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Posterior

Motion 
model Past 

history

Sensor 
model

Bayesian Methods
Discrete Approaches

( ) ( )
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Example: Localization –
Grid Based

Initialize Grid
(Uniformly or according to prior knowledge)

At each time step:
For each grid cell

Use observation model to compute
Use motion model and probabilities to compute 

Normalize

( ) ( )
( 1)

( ) | ( 1), ( 1) ( 1) | (0 : 2), (1: 1)
x k X

P x k u k x k P x k u k y k
− ∈

− − − − −⎡ ⎤⎣ ⎦∑

( )( ) | ( )P y k x k
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… beginning             small No of cycles      sufficient No of 
cycles

Density plots of the robot state

Bayesian Methods
Discrete Approaches
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Often models are non-linear and noise in non gausian. 
Use particles to represent the distribution 
“Survival of the fittest”

Particle Filters

( ) ( ) ( ) ( )∫ −−− ===
Z

tttttt
t

tt dzyzxPzxxPxyP
c

yxP 1:111:1 |1|

Proposal distributionObservation model
(=weight)

Motion model
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Particle Filters 
SIS-R algorithm

Initialize particles randomly 
(Uniformly or according to prior knowledge)

At each time step:

For each particle:
Use motion model to predict new pose (sample from 
transition priors)
Use observation model to assign a weight to each particle 
(posterior/proposal)

Create A new set of equally weighted particles by sampling 
the distribution of the weighted particles produced in the 
previous step.

Sequential 
importance 
sampling

Selection:
Re-sampling



July 2006 Panos Trahanias - Onassis Lecture Series 41/93

Particle Filters – Example 1
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Particle Filters – Example 1

Use motion model to predict new pose
(move each particle by sampling from the transition prior)
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Particle Filters – Example 1

Use measurement model to compute weights
(weight:observation probability) 
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Particle Filters – Example 1

Resample
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Particle Filters – Example 2

Initialize particles uniformly
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Particle Filters – Example 2
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Particle Filters – Example 2
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Particle Filters – Example 2
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Particle Filters – Example 2
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Particle Filters – Example 2
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Discrete State Approaches

Ability (to some degree) to localize the robot even when its 
initial pose is unknown.

Ability to deal with noisy measurements, such as from 
ultrasonic sensors.

Ability to represent ambiguities.

Computational time scales heavily with the number of 
possible states (dimensionality of the grid, size of the cells, 
size of the map).

Localization accuracy is limited by the size of the grid cells.
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Continuous State Approaches

Requirement that the initial state of the robot is known.

Inability to recover from catastrophic failures caused by 
erroneous matches or incorrect error models.

Inability to track Multiple Hypotheses about the location of 
the robot.

Perform very accurately if the inputs are precise 
(performance is optimal in the linear case).

Computational efficiency.
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Hybrid Approaches

Combination of characteristics from both 
methods
Hybrid methods very popular in many scientific 
areas

Control theory
Economics
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Proposed Model 
switching state-space model (SSSM)

Example Belief State

The Switching State-Space model
• M continuous State Vectors
• One discrete “switch” variable

y1 y2 y3 yT

x3
(M)x1

(M) x2
(M) xT

(M)

x3
(1)x1

(1) x2
(1) xT

(1)

s2 s3 sTs1

H. Baltzakis and P. Trahanias, Autonomous Robots 2003
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Initial state must be  known

Inability to recover from 
catastrophic failures

Inability to track Multiple 
Hypotheses

Computational time scales heavily 

Localization accuracy limited

Accurate performance

Computational efficiency

Continuous Model

Switching state-space Model

Combines both models

Perform even when initial pose is 
unknown

Deal with noisy measurements 

Represent ambiguities

Discrete Model

Inherits strengths
Eliminates weaknesses
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Localization

Belief state is intractable
• Mixture of MT Gaussians
• Grows exponentially with time

Solution 
• Selection (eg. Cox94, Jensfelt99, Roumeliotis00 ,Duckett01)

Only keep the most probable paths in model histories (Multiple 
Hypothesis Tracking)

• Collapsing (eg. Murphy98)
Approximate the mixture of MT Gaussians with a mixture of Mr

Gaussians (r: small number, eg. 1,2,3)

y1 y2 y3 yT

x3
(M)x1

(M) x2
(M) xT

(M)

x3
(1)x1

(1) x2
(1) xT

(1)

s2 s3 sTs1
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Localization – Discrete Model
Corner Point Visibility

= cb

cc

la

lb
lc

la
lb
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ca

aa
1

aa
2

ac
2

ac
1

Dominant 
corner point

Invisible
corner point

Visible 
but not dominant

corner point
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Localization – Discrete Model
Corner Point Visibility
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Localization - Discrete Model
(Observation – Transition)

( ) ( ) ( ) ( )∫ −−−=
i

t
i
t

i
t

k
t

k
tt

t
t

k
t yyysPssPsyP

c
yyysP 1211121 ,...,,|1,...,,|



July 2006 Panos Trahanias - Onassis Lecture Series 60/93

T
trtxx

ttxx

KK

rK

ttt

tt

11

11

111

11

++

++

+
−
++

−
++

Σ−Σ=Σ

+= μμ

)(
1

1 −
+

=−
+

txt Hl μ

Localization – Continuous Model
(EKF)
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Project State estimates 
forward (prediction step)

Predict already mapped features 
to the predicted state

Compute Kalman Innovation 

Compute Kalman Gain

Update Initial Prediction
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Localization - Results
(Simulated)
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Localization - Results
(Real world – FORTH 1st floor)
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Localization - Results
(Real world – Outside our lab)
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Mapping
Problem Statement

EnvironmentEnvironment Robot localizationRobot localization
Navigation

Environment MapEnvironment Map

SLAM
Simultaneous Localization

And Mapping
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Mapping – Kalman Tracker

Simultaneously estimate the robot position as well as 
the positions of landmarks (stochastic mapping)

Augment state vector to also include landmark positions

1 1 2 2 ln lnl l

T

r r l l l lx x y x y x y x y⎡ ⎤= ⎣ ⎦"
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Mapping – Kalman Tracker
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Mapping – Discrete Bayesian 
Approach

Recursive Bayesian filtering for estimating the robot 
positions along with a map of the environment

( (1: ), | (0 : 1), (1: ))

( ( ) | ( ), ) (1: 1)

( ( ( ) | ( 1), ( 1))
( (1: 1), | (0 : 2), (1: 1)))

P x k m u k y k

aP y k x k m A B dx k

A P x k u k x k
B P x k m u k y k

−

= −

= − −
= − − −

∫ i i
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Estimating the full posterior is not tracktable
Incremental scan matching

Mapping – Discrete Bayesian 
Approach

{ }
( )

ˆ ˆ ˆ ˆ( ) arg max ( ( ) | ( ), ( (1: 1), (1: 1))) ( ( ) | ( 1), ( 1))
x k

x k P y k x k m x k y k P x k u k x k= − − − −

Let at time k-1 the localization and map estimates:

ˆ ˆ ˆ( 1) ( (1: 1), (1: 1))x k m x k y k− − −

At time k – after moving and getting a new 
measurement y(k)
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Estimating the full posterior is not tracktable
FastSLAM

Mapping – Discrete Bayesian 
Approach

( (1: ), | (0 : 1), (1: ))
( | (0 : 1), (1: )) ( (1: ) | (0 : 1), (1: ))

P x k m u k y k
P m u k y k P x k u k y k

−
= − • −

Usually implemented via particle filters
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Mapping Challenge:
Loops in the robot’s path 

As the robot moves and maps features, errors in both the 
state and the mapped features tend to increase with time

When already mapped areas are visited (a loop is detected), 
the mapping algorithm should be able to correct its state and 
eliminate the accumulated errors

Complicated robot paths, nested loops or loops that close 
simultaneously are difficult cases. 
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Our approach

Off-line Feature-mapping algorithm:

Loop detection is accomplished via a hybrid localizer with global 
localization capabilities (SSSM) that creates hypotheses 
whenever known areas (corner points) are visited 
All hypotheses created by the localizer, whenever loops are 
detected, are tracked individually within their own copy of the 
map. 
The best path through hypotheses histories is selected, a 
Kalman smoother redistributes errors and an iterative 
procedure corrects the map 

H. Baltzakis and P. Trahanias, ICRA 2006
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Line Segments
(used to localize the robot)

Corner Points
(used to create hypotheses)

Features

( )fdf llNl Σ≈ ),,(

Corner Points
Line Segments

( )cyx ccNc Σ≈ ),,(
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Algorithm overview 1

Mapping starts with one hypothesis (dominant)
Existing line segments used for localization while the map is created.
Non existing segments are inserted in the map
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Algorithm overview 2

Detected corner points result in creation of new hypotheses
Hypotheses eventually vanish if observation sequences do not confirm 
their validity
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Algorithm overview 3

Hypotheses maintain their own copy of the map (as many maps 
as hypotheses)
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Algorithm overview 4

Upon entering previously mapped areas (corners detected), new 
hypotheses are created at the correct robot poses 
Correct hypotheses will eventually become more probable since 
observations confirm their validity
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Algorithm overview 5

All hypotheses are tracked within their own copy of the map.



July 2006 Panos Trahanias - Onassis Lecture Series 78/93

Map Rectification - Iterative 
Algorithm

F eature 
Extract ion 

Localize R obot
Forward Pass 

Localize R obot 
Backward Pass

Recompute Map F eaturesMap
Features  

yes no
Converged?

Start

End

E

M
E-STEP: Localize the robot 
using all available 
measurements. 
(obtain max a-posteriori 
estimates of robot states)

M-STEP: Recalculate map 
features

Treat map features as parameters 
of the dynamical  system according 
to which the robot’s state evolves
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Operation of EM Algorithm  
(simulation)

EM Algorithm - Example 
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Results (simulated running example)

Initial map
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Results (simulated running example)

Initial Map Rectified Map Ground Truth
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Results (Di Castello Belgioioso)

Belgioioso dataset available from university of Freiburg

Phase A
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Results (Di Castello Belgioioso)

Belgioioso dataset available from university of Freiburg

Phase B
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Results (Radish - cmu_nsh_level_a)

Radish cmu_nsh_level_a data set submitted by Nick Roy
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Mapping - Results
(Real world – FORTH 1st floor)
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Mapping - Results
(Real world – FORTH 1st FLOOR)

Initial Map Rectified Map Ground Truth
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Visual Information Processing

Laser range finders provide fast and accurate depth 
information for 2D slices of the environment
Various objects are invisible to the laser range finder.
Vision can provide extra information for crucial tasks 
such as obstacle avoidance.



July 2006 Panos Trahanias - Onassis Lecture Series 88/93

Line Segment
Extraction

3D Model
Generation

Range 
Data

Image Data

3D Model
Evaluation

Metric Information
Extraction

Vision 
Accumulation

Grid

Step 1: From 2D laser 
measurements, form 3D model 
hypothesis
Step 2: From 1st camera visual 
data and 3D model hypothesis  
predict visual data at the 2nd

camera. Then, compare actual and 
predicted visual data to evaluate 
the 3D model
Step 3: Wherever 3D model 
hypothesis is invalid, extract metric 
structure information

Visual Information Processing
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Visual Information Processing
(simulated example)



July 2006 Panos Trahanias - Onassis Lecture Series 90/93

Visual Information Processing
(Efficiency considerations)

Depth computations take 
place only where 
inconsistencies are detected
For collision avoidance depth 
computations can be further 
eliminated.

Criterion 1. Visual range 
defers significantly to laser 
range data
Criterion 2. Visual range is 
shorter that corresponding 
laser suggests
Criterion 3. Visual range is 
neither too far nor to close 
to the robot. C1

C2

p1
p2l1 l2

P

e1
e2

I1
I2

ε

2dallow

C1
C2
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p2l1 l2

P
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P
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C1
C2

p1
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e2

I1
I2

ε
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Visual Information Processing
(Real world example – outside our lab)

H. Baltzakis, A. Argyros and P. Trahanias, MVA 2003
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Real Application
(Robotic Tour-guide in exhibition site)

The TOURBOT & 
WebFAIR Projects:
Autonomous mobile 
robots in populated 
environments 
(serving real-
visitors)
Also operating over 
the web (serving 
web-visitirs)

P. Trahanias et al, IEEE RAM 2005
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Thanks!

Thanks for your 
attention! Time 
for a break…


