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Embedded SystemsEmbedded Systems
An Embedded System integrates software and hardware jointly and specifically 

designed to provide given functionalities, which are often critical. 
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Embedded Systems: Economic StakesEmbedded Systems: Economic Stakes

Embedded Systems are of strategic economic importance

� Factor for innovation and differentiation 

� Principal source of added value: particularly for embedded software

� This is the fastest-growing sector in IT

Europe has leading positions in sectors where embedded 
technologies are central to growth

� Currently: Industry (avionics, automotive, space, consumer 
electronics, telecom devices, energy distribution, rail transport, …)

� Anticipated: Services (e-Health, e-Education)



Embedded Systems: TrendsEmbedded Systems: Trends
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It is hard to jointy meet technical requirements such as
� Reactivity: responding within known and guaranteed delay

Ex : flight controller 
� Autonomy : provide continuous service without human 

intervention 
Ex : no manual start, optimal power management

� Robustness : guaranteed minimal service in any case 
Ex : attacks, hardware failures, software execution errors

...and also take into account  economic requirements for optimal 
cost/quality

Technological challenge : 
Building systems of guaranteed functionality and quality, 
at an acceptable cost 



State of the art

� Critical systems of low complexity
� Flight controller

� Complex « best effort » systems
� Telecommunication systems

We need 

� Affordable critical systems 
Ex : transport, health

� Successful integration of heterogeneous systems of 
systems

� Convergence web/embedded systems

� Automated Highways

� New generation air traffic control

� « Ambient Intelligence»
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We master – at a high cost two types of systems which are 

difficult to integrate:
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The ES Challenge

Technological Challenge:Technological Challenge:
Building systems of Building systems of 

guaranteed functionality and quality guaranteed functionality and quality 
(performance and robustness), (performance and robustness), 

at acceptable costs.at acceptable costs.

This This Technological ChallengeTechnological Challenge
hides an underlying hides an underlying Scientific ChallengeScientific Challenge

Scientific Challenge:Scientific Challenge:

The emergence of Embedded Systems The emergence of Embedded Systems 
as a as a scientific and engineering disciplinescientific and engineering discipline

enabling enabling system design predictabilitysystem design predictability,,
as is already the case for the physical sciencesas is already the case for the physical sciences..
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Scientific Challenge

Computing:  
algorithms         
protocols           
architectures

Environment
constraints:
� Performance 
(deadlines,  jitter, 
throughput)
� Robustness (security, 
safety, availability)

Execution 
constraints:
CPU speed 
memory  
power             
failure rates

EMBEDDED SYSTEM
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Scientific Challenge

Embedded System Design 
is 

generalized Hardware Design

Computing:  
algorithms         
protocols           
architectures

Environment
constraints:
� Performance 
(deadlines,  jitter, 
throughput)
� Robustness (security, 
safety, availability)

Execution 
constraints:
CPU speed 
memory  
power             
failure rates

EMBEDDED SYSTEM
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Scientific Challenge

Embedded System Design 
is

generalized  Control Design

Computing:  
algorithms         
protocols           
architectures

Environment
constraints:
� Performance 
(deadlines,  jitter, 
throughput)
� Robustness (security, 
safety, availability)

Execution 
constraints:
CPU speed 
memory  
power             
failure rates

EMBEDDED SYSTEM
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Scientific Challenge
Embedded System Design coherently integrates all these

We need to revisit and revise the most basic computing paradigms
to include methods from Electrical Engineering and Control 

Computing:  
algorithms         
protocols           
architectures

Environment
constraints:
� Performance 
(deadlines,  jitter, 
throughput)
� Robustness (security, 
safety, availability)

Execution 
constraints:
CPU speed 
memory  
power             
failure rates

EMBEDDED SYSTEM



Scientific Challenge:Two Distant Disciplines

Suggested by T. Henzinger: T. Henzinger, J. Sifakis “The Embedded Systems Design Challenge” FM06

Theory for building artifacts with 
predictable behavior

Lack of results allowing 
constructivity

Physics Computer Science
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Studies the laws governing 
energy, matter and their 
relationships

Studies a given « reality »

Physical systems – Analytic 
models

Continuous mathematics 

Differential equations
Estimation theory -
robustness

Constructivity, Predictability

Mature

Studies foundations of 
information and computation

Studies created universes

Computing systems – Machines

Discrete mathematics - Logic

Automata, Algorithms and 
Complexity Theory

Verification, Test

Promising

Scientific Challenge :Two Distant Disciplines

Physics Computer Science



Integrate Analytic and Computational Modeling

SequentialParallelComposition
Control flowData flowConnection

SubroutineTransfer FunctionComponent model

Computing Systems 
Engineering

Physical Systems 
Engineering



Integrate Analytic and Computational ModelingIntegrate Analytic and Computational Modeling
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Matlab/Simulink
Model



Integrate Analytic and Computational ModelingIntegrate Analytic and Computational Modeling

UML Model 
(Rational Rose)



Integrate Analytic and Computational ModelingIntegrate Analytic and Computational Modeling

VerificationSynthesis
Main paradigm

Discrete mathematics (logic, 
combinatorics) 

Worst-case analysis 

Continuous mathematics 
(differential equations, 
stochastic processes) 
Average-case analysis

Analysis Techniques

Dynamic change
Logical time
Abstraction   hierarchies, partial 
specifications

Concurrency
Physical time
Quantitative constraints (power, 
QoS, mean-time-to-failure)

Strengths

Defined by programs
Executable by non-deterministic 
machines

Defined by equations
Deterministic or probabilistic

Computational ModelsAnalytic Models



Encompass heterogeneity: Interoperability

Embedded systems are built from components with different characteristics

� Abstraction levels: hardware,  execution platform, application software

� Execution: synchronous and asynchronous components

� Interaction: function call, broadcast, rendezvous, monitors

We need a unified composition paradigm for describing and analyzing 
the coordination between components



Encompass heterogeneity: Abstraction Levels

Application SW

Implementation

CORBA

DSP μcontroller
RTOS              OSEK

TTA                  CAN

Lustre               ADA     SDL         RT- Java  
Esterel                                                   UML

C C++

Matlab/Simulink



Encompass heterogeneity: Abstraction Levels

Application SW

Functional properties - logical abstract time 
High level structuring constructs and primitives

Simplifying synchrony assumptions wrt environment

Implementation

Non functional properties, involving time and quantities

Task coordination, scheduling, resource management, 

Execution times, interaction delays, latency

abstraction



Encompass heterogeneity: 
Synchronous vs. Asynchronous 

Implementation

� Non interruptible
execution steps 
� Usually, a single task, 
on a single processor

� «Everybody gets 
something »

Synchronous 
Lustre, Esterel

Statecharts

� Event triggered
� Multi-tasking 

- RTOS
� Usually, static 
Priorities

� «Winner takes all »

Asynchronous 
ADA, SDL

Application SW

Component-based

Systems



Encompass heterogeneity: 
Synchronous vs. Asynchronous 

step1step1 step2step2 step3step3

Synchronous execution:
� In a given step all sequential units have some time 

budget.
� Steps are non interruptible; should be small enough to 

ensure reactivity; implemented by strong synchronization 

Asynchronous execution:
� No predefined execution step. Fairness is enforced by 
priorities (preemption of lower priority sequential units)



Encompass heterogeneity: Interaction 

We need a unified composition paradigm for describing and analyzing 
the coordination between components. 

Such a paradigm would allow system designers 
and implementers to formulate their solutions 

in terms of tangible, well-founded and organized concepts
instead of using dispersed low-level coordination mechanisms including 

semaphores, monitors, message passing, remote call, protocols etc. 

Interactions 

� can involve strong synchronization (rendezvous) as in CSP or weak 
synchronization (broadcast) as in SDL, Esterel

� can be atomic as in CSP, Esterel or non atomic as in SDL

� can be binary (point to point) as in CCS, SDL or n-ary as in Lotos



Encompass heterogeneity: Example 

Synchronous Computation

A S nonA S A nonS nonA nonS

Lotos
CSP

Java
UML SDL

UML

Matlab/Simulink
VHDL, Statecharts, 
Synchronous languages

A: Atomic interaction                     S: Strong synchronization

Asynchronous Computation



Cope with Complexity: Achieving Correctness

by Checking that a System 
meets Requirements

Ad hoc models 
e.g. Simulation

Verification 
e.g. Model Checking

Physical prototypes
e.g. Testing

Models 
(Virtual SW Prototypes)

by Construction e.g. 
Algorithms, Architectures 

Correctness



Cope with Complexity: Verification

Three essential ingredients

� Requirements
describing the expected behavior, usually as a set of 
properties

� Models
describing a transition relation on the system states

� Methods
for checking that a system model satisfies given 
requirements



Cope with Complexity: Compositionality

☺

☺
☺

☺

☺

Today, a posteriori system verification at high development costs limited 
to medium complexity systems

Tomorrow, compositional construction: at design time, infer properties of 
a composite system from properties of its components



Cope with Complexity: Compositionality

☺

☺
☺

☺

☺

Today, a posteriori system verification at high development costs limited 
to medium complexity systems

Tomorrow, compositional construction: at design time, infer properties of 
a composite system from properties of its components



Cope with Complexity: Compositionality

Develop compositionality results

� For particular 

� architectures (e.g. client-server, star-like, time triggered)

� programming models (e.g. synchronous,  data-flow)

� execution models (e.g. event triggered preempable tasks) 

� For specific classes of properties such as deadlock-freedom, mutual 
exclusion, timeliness 

Compositionality rules and combinations of them lead

� to “verifiability” conditions, that is conditions under which 
verification of a particular property becomes much easier. 

� to correct-by-construction results 



Cope with Uncertainty: Adaptivity

Systems must ensure a given service, in interaction with uncertaSystems must ensure a given service, in interaction with uncertain in 
and unpredictable environmentsand unpredictable environments

Today, to cope with uncertainty, systems are overToday, to cope with uncertainty, systems are over--sized and make a sized and make a 
subsub--optimal use of their resources : optimal use of their resources : 
static and separated static and separated allocation for each critical serviceallocation for each critical service

Tomorrow, adaptive systems ensuring optimal, dynamic and global 
resource management for enhanced predictability and use of 
resources

Control UnitControl Unit

Control UnitControl Unit

Control UnitControl Unit

ArbiterArbiter



Cope with Uncertainty: Adaptive System

32

Planning

Learning

Managing Conflicting Objectives 

Movie would have been better …

Go to:   1) Stadium   2) Movie  3) Restaurant



Cope with Uncertainty: Adaptive System 

Learning

Strategies 
for Managing Objectives

Controlled System

Tactics 
for achieving objectives

Adaptive Controller

choices states
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Model-based Development

Compilation/Synthesis

Application
SW

Platform
Timed Model

Environment
Timed Model

User
Requirements

System
Timed Model

Code
Generation

Implementation

Analysis

Diagnostics



Model-based Development – Timed model

Environment
Application

SW

RT
O

S HW

A Timed Model of a RT system can be obtained by 
“composing” its application SW with constraints e.g. timing, 
induced by both its execution and its external environment

stimuli

response

Real-time system



Model-based Development – Timed model

Time constraints on 
interactions

Timeouts to control 
waiting  times

Time 
Triggered
Events

Assumptions about
Execution Times 
Platform-dependence

No assumption about 
Execution Time
Platform-independence

Statements

Quantitative (internal) time 
- Consistency problems 

Reference to physical
(external) time

Time                 

Reactive machine
+ Environment
+ Platform

Program - Reactive 
machine                     

Description  

Timed modelApplication SW

TO(5)

input input (5)



Model-based Development – An example (1/3)

Environment

Reactive C

DSP

Event handler

tin

tout

Deadline constraint
tout - tin<D

Throughput constraint:
no buffer overflow



Model-based Development – An example (2/3)

Machine 
Description

C Code

Reactive C

Target Machine
executable code

SAXO-RT

SAXO IF/KRONOS

Timing 
Diagnostics

Environment
Timed Model

Event Handler 
Timed Model

Exec. T
imes

C2TimedC
Timed

(instrumented) 
C Code



Model-based Development – An example (3/3)

Application = 
Reactive C
+ Pragmas

Instrumented 
C Code

SAXO-RT

Event 
Handler

IF/KRONOS

Timing 
Diagnostics

Exec.Times

QoS requ.

Environment 
= Reactive C 
+ Pragmas

Instrumented 
C Code

SAXO-RT

SAXO

Target Machine 
Executable 

Code
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Compiler
Compiler

Task1 Task2 Task3 Task4Event
Handler

Synchronization and resource management

Compiler

Security

Scheduler

Platform

Timing
QoS

Architecture
modelApplication SW

Resource-aware Compilation
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� Minimal architectures, reconfigurable, adaptive, with features for 
safety and security

� Give up control to the application –
move resource management outside the kernel

� Supply and allow adaptive scheduling policies which take into 
account the environmental context (ex: availability of critical 
resources such as energy). 

Operating systems are often:

� Far more complex than necessary

� Undependable

� With hidden functionality

� Difficult to manage and use efficiently

Move towards standards dedicated to specific domains 
Ex: OSEK, ARINC, JavaCard, TinyOS

Operating Systems
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Automation applications are of paramount importance –
their design and implementation raise difficult problems

Hybrid Systems – active research area

� Combination of continuous and discrete control  techniques

� Multi-disciplinary integration aspects (control, numerical analysis, 
computer science)

� Modeling and Verification

� Distributed and fault-tolerant implementations (influence 
communication delays, clock drift, aperiodic sampling)

ª Use of control-based techniques for adaptivity

Control for Embedded Systems



1. An unmanned plane (UAV) deploys motes1. An unmanned plane (UAV) deploys motes

2.2. Motes establish an sensor network Motes establish an sensor network 
with power managementwith power management

3.3.Sensor network detectsSensor network detects
vehicles and  wakes up vehicles and  wakes up 

the sensor nodesthe sensor nodes

ZzzZzz......

Sensor Networks

SentrySentry
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Work Directions :
� Methodologies for domain-specific standards, such as :

- DO178B Process Control Software Safety Certification 
- Integrated Modular Avionics; Autosar
- Common Criteria for Information Technology Security Evaluation 

� Verification Technology (verify resistance to certain classes of errors and attacks) –
certification

� Architectures, protocols and algorithms for fault-tolerance and security taking into 
account QoS requirements (real-time, availabability)

� Traditional techniques based on massive redundancy are of limited value

� Dependability should be a guiding concern from the very start of system 
development. This applies to programming style, traceability, validation 
techniques, fault-tolerance mechanisms, ...

Dependability 



Integration of Methods and Tools
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SystemC                SystemC                MatlabMatlab//SimulinkSimulink SDLSDL UML UML 
AADLAADL

VHDL        VHDL        LustreLustre--EsterelEsterel ADA              ADA              RTRT--JavaJava

OSEK     ARINC       OSEK     ARINC       RavenscarRavenscar JavaCardJavaCard SymbianSymbian TinyOSTinyOS

μμcontrollercontroller DSP  FPGA     DSP  FPGA     SoCSoC NoCNoC

AutosarAutosar .NET         .NET         JiniJini
CorbaCorbaTTP        CAN     TTP        CAN     SafeBusSafeBus BluetoothBluetooth WiFiWiFi

VxWorksVxWorks POSIX     POSIX     WinCEWinCE

C      C++                                C#          JavaC      C++                                C#          Java

HW

OS

NW

MW

PR

MO
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THANK YOUTHANK YOU


