
Component-based Construction
of Heterogeneous
Real-time Systems in BIP

Joseph SifakisJoseph Sifakis
in collaboration with A. in collaboration with A. BasuBasu, S. Bensalem, S. , S. Bensalem, S. BliudzeBliudze, M. , M. BozgaBozga, Hung Nguyen, Hung Nguyen

VERIMAG VERIMAG LaboratoryLaboratory

HeraklionHeraklion, July 22, 2008, July 22, 2008

Motivation

Building systems from heterogeneous components

� SW Component frameworks, such as
� Coordination languages, extensions of programming languages :

Linda, Javaspaces, Concurrent Fortran, NesC, BPEL
� Middleware e.g. Corba, Javabeans, .NET
� Software development environments: PCTE, SWbus, Softbench, Eclipse

� System modeling languages: Statecharts, UML, Simulink/Stateflow,
Metropolis, Ptolemy

� Hardware description languages: VHDL, Verilog, SystemC

We need an all-encompassing component-based construction
framework for
� Mastering complexity through componentization
� Enhanced verifiability by compositional reasoning
� Comparing different architectural solutions of the same problem

Motivation

Provide a framework for describing and analyzing coordination between
components in terms of tangible, well-founded and organized concepts
The framework should

� be expressive enough to directly encompass heterogeneity of
synchronization (rendezvous and broadcast) and execution
mechanisms (synchronous and asynchronous) – adequate notion of
expressiveness

� use a minimal set of constructs and principles

� treat interaction and system architecture as first class entities that
can be composed and analyzed - independently of the behavior of
individual components

� provide automated support for component integration and generation
of glue code meeting given requirements

O
V
E
R
V
I
E
W

4

� Component-based Construction

� BIP: Basic Concepts

� Modeling Interactions

� Modeling Priorities

� The BIP framework

� Expressiveness

� Discussion

Component-based Construction: The Problem

Build a component C satisfying a given property P, from
� C0 a set of atomic components described by their behavior
� GL ={gl1, …, gli, …} a set of glue operators on components

c1 c’1
gl1

c2 c’2

gl12
sat Pgl2

� Move from frameworks based on single composition operators to
frameworks based on families of composition operators

� Enhanced expressiveness for modeling coordination mechanisms such
as such as protocols, schedulers, buses

Glue operators

B1

gl
B2 Bn

Operational Semantics
� The meaning of a composite component is an atomic component

Operational
Semantics

B

Algebraic framework
� Components are terms of an algebra of terms (C, ≅) generated

from C0 by using operators from GL
� ≅ is a congruence compatible with operational semantics

Glue operators

{qi - ai → q’i }i∈I { ¬ qk - aks → }k∈K

(q1 ,. ., qn) - a → (q’1 ,. . , q’n)

A glue operator is a set of derivation rules of the form

� a= ∪i ∈I aI is an interaction
� q’i = qi for i ∉I
� there is at most one positive premise for each argument

(component)
� there is at least one positive premise

A glue is a set of glue operators

Incrementality

c1 c’1 c2 c’2

gl
c2 c’2

gl2

c1 c’1
gl1

2. Flattening

gl1

1. Decomposition

gl

C1 C2 Cn

≅

≅

gl2

C2 Cn

C1

Compositionality

Build correct systems from
correct components: rules for
proving global properties from
properties of
individual components

We need compositionality results for the preservation of progress properties such as
deadlock-freedom and liveness as well as extra-functional properties

☺ ☺
gl

☺

ci sat Pi implies ∀gl ∃gl~ sat gl(P1, ..,Pn)
gl

c1 cn

~

Composability

Rules for property-preserving
composition of designs ☺

gl

☺ ☺
gl

/

Property stability phenomena are poorly understood.
We need composability results e.g. interaction of features in middleware,
composability of scheduling algorithms, theory for reconfigurable systems

sat Pgl
c1 cn

and sat P’gl’
c1 cn

implies sat P∧P’gl ⊕ gl’
c1 cn

O
V
E
R
V
I
E
W

11

� Component-based Construction

� BIP: Basic Concepts

� Modeling Interactions

� Modeling Priorities

� The BIP framework

� Expressiveness

� Discussion

BIP: Basic Concepts

||

B E H A V I O R
Interactions (collaboration)

Priorities (conflict resolution)

PR2
IN2

Layered component model

PR1
IN1

Composition (incremental description)

BIP: Basic Concepts

||

B E H A V I O R
Interactions (collaboration)

Priorities (conflict resolution)

PR2
IN2

Layered component model

PR1
IN1

Composition (incremental description)

IN1 ⊗ IN2 ⊗ IN12
PR1 ⊕ PR2 ⊕ PR12

BIP: Basic Concepts

s

Sender

r1

Receiver1

Interactions: sr1r2r3

Priorities: ∅

Rendezvous

s r1

r2

Receiver2

r2

r3

Receiver3

r3

BIP: Basic Concepts

Interactions: s + sr1 + sr2 + sr3 + sr1r2 + sr2r3 + sr1r3 + sr1r2r3

Priorities: x 〈 xy for x, xy=interactions

Broadcast

s

Sender

r1

Receiver1

s r1

r2

Receiver2

r2

r3

Receiver3

r3

BIP: Basic Concepts

Interactions: s + sr1r2r3

Priorities: x 〈 xy for x, xy=interactions

Atomic Broadcast

s

Sender

r1

Receiver1

s r1

r2

Receiver2

r2

r3

Receiver3

r3

BIP: Basic Concepts

Interactions: s + sr1 + sr1r2 + sr1r2r3

Priorities: x 〈 xy for x, xy=interactions

Causal Chain

s

Sender

r1

Receiver1

s r1

r2

Receiver2

r2

r3

Receiver3

r3

BIP: Basic Concepts - Semantics

Interactions a∈γ ∧ ∀i∈[1,n] qi - a∩Pi→i q’i
(q1 ,., qn) - a →γ (q’1 ,., q’n) where q’I =qI if a∩Pi=∅

� a set of atomic components {Bi }i=1..n
where Bi =(Qi, 2Pi, →i)

� a set of interactions γ

� priorities π, partial order on interactions

π γ (B1,., Bn)

Priorities q- a →γ q’ ∧ ¬ (∃ q- b→γ ∧ a π b)
q- a →π q’

O
V
E
R
V
I
E
W

19

� Component-based Construction

� BIP: Basic Concepts

� Modeling Interactions

� Modeling Priorities

� The BIP framework

� Expressiveness

� Discussion

Simple Connectors

s + sr2 + sr3 +sr2r3

� A connector is a set of ports that can be involved in an interaction

tick1 tick2 tick3

s r2 r3

tick1tick2tick3

� Port attributes (trigger , synchron) are used to model
rendezvous and broadcast.

� An interaction of a connector is a set of ports such that: either it
contains some trigger or it is maximal.

Express interactions by combining two protocols: rendezvous and broadcast

Hierarchical Connectors

Atomic Broadcast:
a+abc

Causality chain: a+ab+abc+abcd

c d

c(1+d)

b c

bc
a(1+bc)

a

y=
b(1+y)

b

x=
a(1+x)

a

The Algebra of Connectors

bc
a(1+bc)

a b c

Atomic Broadcast
a’[bc]

b(1+c(1+d))
c(1+d)

a(1+b(1+c(1+d)))

a b c d

Causality chain
a’[b’[c’d]]

a(1+b)(1+c)

a b c

Broadcast
a’bc

The Algebra of Connectors

a b c a b c
≈

+≈

[a’b]’c a’bc

a ba

a’b’

a b

a’b

a ba

ab’

The Algebra of Connectors AC(P)

Syntax: s ::= [0] | [1] | [p] |[x] (synchrons)
t ::= [0]’ | [1]’ | [p]’ | [x]’ (triggers)
x ::= s | t | x.x | x + x
where P is a set of ports, such that 0,1∉P

+ union idempotent, associative, commutative, identity [0]

. fusion idempotent, associative, commutative, identity [1],
distributive wrt + ([0] is not absorbing)

[], []’ typing unary operators

Semantics: defined as a function | |: AC(P) → 22P

Results [Bliudze&Sifakis, EmSoft 07]:
� Axiomatization
� Boolean representation allowing efficient implementation

The Algebra of Connectors: Boolean representation

β: AC(P)→ B(P) where B(P) is the boolean calculus on P

For P={p,q,r,s,t}

β(pq) = p∧q ∧ ¬r ∧ ¬s ∧ ¬t

β(p’qr) = p∧ ¬s ∧ ¬t

β(p+q) =(p∧ ¬ q ∨ ¬ p∧ q)∧ ¬r ∧ ¬s ∧ ¬t

β(0) = false

β(1) = ¬ p∧ ¬ q ∧ ¬r ∧ ¬s ∧ ¬t

β(1+p’q’r’s’t’) = true

Boolean representation depends on the set of ports P

Compositional Deadlock Verification

For K1,K2,K3 deadlock-free components

p1

k1
p2

k2

p1

k1

p2

k2
q1 q2

p1

k1
p2

k2

k3

r1 q2

q3r3

D = en(p1) ∧ ¬ en(p2) ∧
en(q2) ∧ ¬ en(q1)

D = en(p1) ∧ ¬ en(p2) ∧
en(q2) ∧ ¬ en(q3) ∧
en(r3) ∧ ¬ en(r1)

Compositional Deadlock Verification

Eliminate potential deadlocks D by checking that
I∧D=false

for some global invariant I computed compositionally

29m13s

15m28s

1m15s

22m02s

1m42s

1m05s

3s

time

0~10^3910266152R/W (130 readers)

0~10^3010206102R/W (100 readers)

0~10^151010652R/W (50 readers)

0??5089125UTOPAR
(8 cars,16 CU)

0 ??2644514UTOPAR
(4 cars,9 CU)

153250105Temperature
Control (4 rods)

883063Temperature
Control (2 rods)

Nb
Rm Deadl

Nb
Pot Deadl

Nb
Int Var

Nb
Bool
Var

Nb
Ctrl St

Nb
Comp

Example

Results obtained by using the D-Finder tool: http://www-verimag.imag.fr/~thnguyen/tool/

O
V
E
R
V
I
E
W

28

� Component-based Construction

� BIP: Basic Concepts

� Modeling Interactions

� Modeling Priorities

� The BIP framework

� Expressiveness

� Discussion

Priorities as Controllers

Controller restricts non determinism to enforce a property P

Controller for P

Interactions

stateinteraction

Results [Goessler&Sifakis, FMCO2003][Goessler&Sifakis, FMCO2003] :
� Controllers enforcing deadlock-free state invariants can be described

by dynamic priorities
� Conversely, for any dynamic priorities there exists a controller

enforcing a deadlock-free state invariant

Priorities: Definition

g1 g2

Priority rule Restricted guard g1’
true → p1 〈 p2 g1’ = g1 ∧ ¬ g2

C → p1 〈 p2 g1’ = g1 ∧ ¬(C ∧ g2)

p1 p2

Priority rules

Priorities: FIFO policy

PR : t1≤ t2 → b1〈b2 t2<t1 → b2〈b1

idle1

ready1

exec1

idle2

ready2

exec2
f1

b1

a1

b2

a2

f2
#

start t1 start t2

Priorities: EDF policy

idle1

ready1

exec1

idle2

ready2

exec2
f1

b1

a1

b2

a2

f2
#

PR: D1-t1≤ D2- t2 → b2〈 b1 D2-t2< D1-t1 → b1〈 b2

start t1 start t2

t1 ≤D1 t2 ≤D2

Priorities: Composition

PR1
PR2

≠ PR2
PR1

a c
b

a 〈1 b c
b

b〈2 c
c

b〈2 c
a 〈1 b

a c a c

Priorities: Composition

PR1⊕ PR2 is the least priority containing PR1∪PR2

Results :
•The operation ⊕ is partial, associative and commutative
• PR1(PR2(B)) ≠PR2(PR1(B))
• PR1⊕ PR2(B) refines PR1∪PR2(B) refines PR1(PR2(B))
• Priorities preserve deadlock-freedom

PR1
PR2 PR1⊕ PR2

We take:

=Δ

Priorities: Mutual Exclusion + FIFO policy

true → b1〈 f2 true → b2〈 f1

t1≤ t2 → b1〈 b2 t2< t1 → b2〈 b1

idle1

ready1

exec1

idle2

ready2

exec2
f1

b1

a1

b2

a2

f2

start t1 start t2

Priorities: Mutual Exclusion - Example

s1 b1

w2
a1

f1

a2

f2

PR : b1 〈 f2 b2 〈 { f1, b1’} (mutex on R)

b2’

b1’ b2

R

RR’ RR’

R’

Risk of deadlock: PR⊕PR’ is not defined!

PR’: b2’ 〈f1 b1’ 〈 { f2, b2 } (mutex on R’)

s2

w1

O
V
E
R
V
I
E
W

37

� Component-based Construction

� BIP: Basic Concepts

� Modeling Interactions

� Modeling Priorities

� The BIP framework

� Expressiveness

� Discussion

The BIP Framework: Model Construction Space

A system is defined as a point of the 3-
dimensional space
Separation of concerns: any combination of
coordinates defines a systemBe

ha
vi

or

 B
H

IN Interaction

P
R

 P

rio
rit

y

Architecture

System

The BIP Framework: Model Construction Space

Characterize relations between classes by
elementary model transformations:
� Untimed-Timed
� Synchronous – Asynchronous
� Event triggered – Data triggered

BH
s

INa

asynchronousP
R

a
P

R
s

synchronous

BH
a

INs

The BIP Framework: Timed vs. Untimed

ptimeout

tick
x++

tick

tick tick tick tick

PR: red_guards →tick 〈 all_other_ports

x:=0

x=10 x<10

Implementation: Overall architecture

BIP Program

compiler

BIP Model

code
generation

BIP/Linux
Platform

BIP C++ Code
centralized/distributed

execution,
guided/exhaustive

simulation

deadlock detection
invariant generationmodel

transformations

BIP MetaModel

Implementation: generation of C++ code

Interaction Meta-model

Dynamic priorities
Meta-model

Execution
EngineBIP model

C→a〈b

Component Meta-model

PLATFORM

Implementation: The Execution Platform

Interaction model

Priorities

Execution
Engine

Platform

The Language: Atomic Components

component C
port trigger: p1, … ; synchron: p2, …
data {# int x, float y, bool z, …. #}
init {# z=false; #}

behavior
state s1

on p1 provided g1 do f1 to s1’
……………… ……
on pn provided gn do fn to sn’

state s2
on …..

….

state sn
on

end
end

The Language: Connectors and Priorities

connector BUS= {p, p’, … , }
trigger()

behavior
on α1 provided gα1 do fα1
on α2 provided gα2 do fα2

end

priority PR
if C1 (α1 < α2), (α3 < α4) , …
if C2 (α < …), (α <…) , …
…
if Cn (α <…), (α <…) , …

The Language: Compound Components

component name
contains c_name1 i_name1(par_list)

……
contains c_namen i_namen(par_list)

connector name1
……
connector namem

priority name1
……
priority namek
end

MPEG4 Video Encoder

f_in f_out

grabPicture()

f_in f_out

outputPicture()

GrabPicture OutputPicture

f_out f_out f_outf_in f_inf_in

Encode

Transform a monolithic program into a componentized one
++ reconfigurability, schedulability
– – overheads (memory, execution time)

Video encoder characteristics:
� 12000 lines of C code
� Encodes one frame at a time:

� grabPicture() : gets a frame
� outputPicture() : produces an encoded frame

MPEG4 Video Encoder: Architecture

Reconstruction

Intraprediction

IQuant

IDCT

MotionEstimation

DCT

Quant

Coding

GrabMacroBlock

out
in

out
in

out
in

out
in

out
in

out

f_in

out
in

out
in

in1 in2

f_in

f_out

f_out

: buffered
connections

GrabMacroBlock:
splits a frame in
(W*H)/256 macro
blocks, outputs one
at a time

Reconstruction:
regenerates the
encoded frame from
the encoded macro
blocks.

MPEG4 Video Encoder: Atomic Components

in out

fn()

in c<MAX c:=c+1

f_out
c=MAX
c:=0

Reconstruction

f_in

out

GrabMacroBlock

c<MAX
grabMacroBlock(), c:=c+1

in f_outout

out

f_in

in

reconstruction()

exit
c=MAX c:=0

MAX=(W*H)/256
W=width of frame
H=height of frame

MPEG4 Video Encoder: Experimental results

� BIP code describes a control skeleton for the encoder
� Consists of 20 atomic components and 34 connectors
� ~ 500 lines of BIP code
� Functional components call routines from the encoder library

� The generated C++ code from BIP is ~ 2,000 lines

� The size of the BIP binary is 288 Kb compared to 172
Kb of monolithic binary.

MPEG4 Video Encoder: Experimental results

Overhead in execution time with respect to monolithic code:

� ~66% due to communication (can be reduced by
composing components at compile time)
.

� ~34% due to resolution of non determinism (can be
reduced by computing restricted guards at compile time)

We know how to reduce execution time overhead
for componentized code

The DALA Robot: Architecture

Functional and Control Level

ModuleModule

Task

Service

Controller

Task

Service

Controller

Task

Service

Controller

Task

Service

Controller

Poster Poster

Functional and Control Level ::= (Module)+

Module ::= (Service)+ . (Poster)

Service ::= (Service Controller) . (Service Task)

Service Controller ::= (Event Triggered Controller) | (Cyclic Controller)

Cyclic Controller ::= (Event Triggered Controller) . (Cyclic Trigger)

Service Task ::= (Timed Task) | (Untimed Task)

The DALA Robot: Event Triggered Controller

Triggered by events provided by the Decision Level

Ready

Idle

Exec

Abort

trigger

request

interrupt

abort

abort
finish

trigger

interrupt abort requestfinish

Idle: the Service is idle

Ready: checks the possibility for
starting a new Task of the Service

Exec: exécution of the Task of the
Service

Abort: Service is aborted

The DALA Robot: Event Triggered Controller

Cyclic Controller ::=
(Event Triggered Controller) . (Cyclic Trigger)

Exectick
count<p / count++ count == p / count := 0

trigger

trigger

tick
Cyclic Trigger

trigger

interrupt abort requestfinish

Event Triggered Controller

tick

interrupt abort finish request

The Cyclic Trigger starts the Event Triggered Controller every period p

The DALA Robot: Untimed Task

Triggered by request

The variable status specifies the previous state of Task
status == 1 : Task successfully executed
status == 0 : Task aborted

interrupt requestabort finish

Exec

Abort

Idle

request

interrupt
abort

finish

read

write

read

write

state

state
state

state

status

status := 1

The DALA Robot: Timed Task

interrupt requestabort finish

Exec

Abort

Idle

request

abort

finish /status:=1

read
write

tick

read

tick
tick

write
count < t2 / count++

t1 ≤ count ≤ t2 state

state
state

state

status

/count:=0

interrupt

� Obtained from an Untimed Task
� Its execution time is in [t1,t2]

The DALA Robot: Different types of Services
Untimed Event Triggered Service

::= Event Triggered Controller. Untimed Task

trigger

intrpt req abort finish

intrpt req abort finish

Event Triggred
Controller

Untimed Taskread

state
statestatuswrite

Untimed Event
Triggered Service

trigger

intrpt req abort finish

intrpt req abort finish

Event Triggred
Controller

Timed Task

read

state
statestatuswrite

tick

Timed Event Triggered Service

intrpt req abort finish

intrpt req abort finish

Cyclic Controller

Timed Task

read

state
statestatuswrite

tick

tick

tick

Cyclic Service

Timed Event Triggered Service ::= Event Triggered Controller. Timed Task

Cyclic Service ::= Cyclic Controller . Timed Task

The DALA Robot: A Module

A module composed of 3 services and a poster

Module

tick

offer

Exec
writeoffer

offer write
data

Poster

read

req okabortintrpt
tick read

tick

write

read

Cyclic Service

triggerread

trigger

req okabortintrpt

req okabortintrpt

trigger

tick

tick

read tick

triggerread

trigger

req okabortintrpt

req okabortintrpt

trigger

write
write

read

Untimed Event
Triggered Service

state
state
status state

state

state

state

readread

write
write status

req okabortintrpt

write

trigger

trigger

tick

status

Timed Event
Triggered Service

O
V
E
R
V
I
E
W

59

� Component-based Construction

� BIP: Basic Concepts

� Modeling Interactions

� Modeling Priorities

� The BIP framework

� Expressiveness

� Discussion

Expressiveness for component-based systems

gl3

c1 c2 c3 c4

gl1 gl2

c1 c3 c2 c4

gl1

gl1
gl1

Given two glues G1 , G2

G2 is strongly more expressive than G1

if for any component built by using G1 and C0

there exists an equivalent component built by using G2 and C0

≅

Expressiveness for component-based systems

gl3

c3c1 c2

gl1

c1 c3 c c2

gl1

gl1
gl1

Given two glues G1 , G2

G2 is weakly more expressive than G1

if for any component built by using G1 and C0

there exists an equivalent component built by using G2 and C0∪ C
where C is a finite set of coordination behaviors.

≅

Expressiveness for component-based systems

BIP IM CCS

SCCS

CSP

<S

<S

<S

<S W >W >

W >

W >

[Bliudze&Sifakis, Concur 08]

O
V
E
R
V
I
E
W

63

� Component-based Construction

� BIP: Basic Concepts

� Modeling Interactions

� Modeling Priorities

� The BIP framework

� Expressiveness

� Discussion

Discussion

Clear separation between behavior and architecture
� Architecture = interaction + priority
� Minimal set of constructs and principles
� Correctness-by-construction techniques for deadlock-freedom and

liveness, based on sufficient conditions on architecture

Expressiveness results
� BIP is as expressive as the most general glue
� Separation between interaction and priority for enhanced analysis and

system construction methodology

Applications
� Software componentization
� Modeling mixed HW / SW systems e.g. sensor networks

