

Barcelona Supercomputing Center Centro Nacional de Supercomputación

"Supercomputing for the Future, Supercomputing from the Past"

Onassis Foundation Lectures on Computer Science Keraklion, Crete, July 21-25, 2008

Heraklion, Crete, July 25th, 2008

Prof. Mateo Valero Director

Talk outline

- Supercomputing from the past
 - Architecture evolution
 - Applications and algorithms
- Supercomputing for the future
 - Technology trends
 - Multidisciplinary top-down approach

Conclusions

30th List: The TOP10

_	Aanufacturer Computer Rmax [TF/s] Installation Site		Installation Site	Country	Year	#Cores			
1	IBM	BlueGene/L eServer Blue Gene		DOE/NNSA/LLNL	USA	2007	212,992		
2	IBM	JUGENE BlueGene/P Solution	167.3	Forschungszentrum Juelich	Germany	2007	65,536		
3	SGI	SGI SGI Altix ICE 8200		New Mexico Computing Applications Center	USA	2007	14,336		
4	HP	Cluster Platform 3000 BL460c	117.9	Computational Research Laboratories, TATA SONS	India	2007	14,240		
5	H Plenty of room for research!								
6									
7	Cray Jaguar Cray XT3/XT4		101.7	DOE/ORNL	USA	2007	23,016		
8	IBM BGW eServer Blue Gene		91.29	IBM Thomas Watson	USA	2005	40,960		
9	Cray Franklin Cray XT4 85.37		85.37	NERSC/LBNL USA		2007	19,320		
10	IBM New York Blue eServer Blue Gene		82.16	Stony Brook/BNL	USA	2007	36,864		

30th List / November 2007 www.top500.org

page 16

		31th Lis	ST:	Ine IOP1	0		
	Manufacturer	Computer	Rmax [TF/s]	Installation Site	Country	Power [MW]	#Cores
1	IBM	Roadrunner BladeCenter QS22/LS21	1,026	DOE/NNSA/LANL	USA	2.35	122,400
2	IBM	BlueGene/L eServer Blue Gene Solution	478.2	DOE/NNSA/LLNL	USA	2.33	212,992
3	IBM	Intrepid Blue Gene/P Solution	450.3	DOE/ANL	USA	1.26	163,840
4	Sun	Ranger SunBlade x6420	326	TACC	USA	2.00	62,976
5	Cray	Jaguar Cray XT4 QuadCore	205	DOE/ORNL	USA	1.58	30,976
6	IBM	JUGENE Blue Gene/P Solution	180	Forschungszentrum Juelich (FZJ)	Germany	0.50	65,536
7	SGI	Encanto SGI Altix ICE 8200	133.2	New Mexico Computing Applications Center	USA	0.86	14,336
8	НР	EKA Cluster Platform 3000 BL460c	132.8	Computational Research Laboratories, TATA SONS	India	1.60	14,384
9	IBM	Blue Gene/P Solution	112.5	IDRIS	France	0.32	40,960
10	SGI	SGI Altix ICE 8200EX	106.1	Total Exploration Production	France	0.44	10,240

4 1

31st List / June 2008

page 1

4

IBM continues to lead the TOP20 with 10 system. There was a great deal of activity in the Top20 with 14new, upgraded or improved benchmark entries.

#	Ven- dor	Rmax TFlops	Installation
1	IBM	1026	DOE/NSSA/LANL New (QS22/LS21)
2	IBM	478.2	DOE/NSSA/LLNL (104 racks BlueGene/L)
3	IBM	450.3	Argonne Natl Lab (40 racks Blue Gene/P)
4	Sun	326	Texas Adv Comp Center (QC Opteron) New
5	Cray	205	Oak Ridge NL (XT4 QC Opteron)
6	IBM	180	FZJ Juelich Better (16 racks Blue Gene/P) Bmk
7	SGI	133.2	New Mexico CACBetter(Altix Clovertown)Bmk
8	HP	132.8	TATA Research Lab (Clovertow Bette)
9	IBM	112.5	IDRIS New (10 racks Blue Gene/P)
10	SGI	102.8	Total Exploration (Altix Quad Core Xeon)New

#	Ven-dor	Rmax TFlops	Installation	
11	HP	102.8	Swedish Govt (Clovertown)	
12	Cray	102.2	Sandia – Red Storm (XT3 Opteron)	
13	IBM	92.96	EDF R&D (8 rack Blue Gene/P)	₽ ₽ ₽
14	IBM	91.29	BlueGene at Watson (20 racks BlueGene/L)	
15	Cray	85.368	NERSC/LBNL (XT4 Opteron)	
16	Hitachi	82.984	T2K Open SC-Japan (QC Opteron)	} ∍w
17	IBM	82.16	Stony Brook / BNL (18 racks BlueGene/L)	
18	IBM	80.32	ECMWF (Power 575, p6)	}w
19	IBM	80.32	RZG/Max Planck/IPP (Power 575, p6)	₹ Sw
20	Appro	76.46	Univ of Tsukuba (QC Opteron)	e S W

Source: www.top500.org

Hybrid SMP-cluster parallel systems

 Most modern high-performance computing systems are clusters of SMP nodes (performance/cost trade-off)

- Programming models allow to specify:
 - How computation is distributed?
 - How data is distributed and how is it accessed?
 - How to avoid data races?

Per Stenström

IBM breaks 1 Petaflop barrier with hybrid configuration at Los Alamos

System Highlights ...

- ✓ 1st to break the Petaflop barrier
- ✓Fastest machine in USA
- Largest contributor to Top500 aggregate performance with 1.026 of 11.7 Petaflops (8.7%)
- ✓ Third most power efficient system (QS22s at Fraunhofer and IBM Germany are #1 and #2)

Site: DOE/NNSA/LANL

System Name: QS22/LS21

System Configuration: IBM BladeCenter cluster of 17 Connected Units (CUs) for a total 3060 nodes dual socket 1.8 GHz Opteron (dual core) LS21 blades plus 6120 nodes dual socket 3.2 GHz PowerXCell 8i (8 SPU + 1 PPU cores) QS22 blades. InfiniBand Interconnect. 280 racks total.

Cores: 122,400 Rmax: 1,026,000 GF Nmax: 2236927 Rpeak: 1,375,776 GF Power: 2345 kW Mflops/Watts: 437 Mflops/W

Source: www.top500.org

BlueGene/P

Columbia configuration

Front End

- 128p Altix 3700 (RTF)

Networking

- 10GigE switch 32-port
- 10GigE cards (1 per 512p)
- InfiniBand switch (288 port)
- InfiniBand cards (6 per 512p)
- Altix 3700 2BX 2048 Numalink Kits

Compute Node (single sys image)

- Altix 3700 (A) 12x512p
- Altix 3700 BX2 (T) 8x512p

Storage Area Network

- Brocade switch 2x128 port

Storage (440 TB)

- FC RAID 8x20 TB (8 racks)
- SATARAID 8x35TB (8 racks)

Processors, Blades, BladeCenters and Racks

Heraklion, Crete, July 25th, 2008

Center

tro Nacional de Supercomputación

Faith-based Computing

The Ultimate Answer to Life, the Universe, and Everything

"Forty-two!" yelled Loonquawl. "Is that all you've got to show for seven and a half million years' work?" "I checked it very thoroughly," said the computer, "and that quite definitely is the answer. I think the problem, to be quite honest with you, is that you've never actually known what the question is."

mputing Center (BSC)

The Ultimate Answer from Deep Thought in "The Hitchhiker's Guide to the Galaxy"

Red Española de Supercomputación

Altamira

MareNostrum

MareNostrum

Processor:10240 PowerPC 970 2.3 GHzMemory:20 TBytesDisk:280 + 90 TBytesNetwork:Myrinet, Gigabit, 10/100System:Linux

UPM

Processor:2408 PowerPC 970 2.2 GHzMemory:4.7 TBytesDisk:63 + 47 TBytesNetwork:Myrinet, Gigabit, 10/100System:Linux

IAC, UMA, UC, UZ, UV

Process: 512 PowerPC 970 2.2 GHz Memory: 1 TByte Disk: 14 + 10 TBytes Network: Myrinet, Gigabit, 10/100 System: Linux

Picasso

Tirant

Performance development

A growth-factor of a billion in performance in a career

Heraklion, Crete, July 25th, 2008

Alliant, American Supercomputer, Ametek, AMT, Astronautics, BBN Supercomputer, Biin, CDC, Chen Systems, CHOPP, Cogent, Convex (now HP), Culler, Cray Computers, Cydrome, Dennelcor, Elexsi, ETA, E & S Supercomputers, Flexible, Floating Point Systems, Gould/SEL, IPM, Key, KSR, MasPar, Multiflow, Myrias, Ncube, Pixar, Prisma, SAXPY, SCS, SDSA, Supertek (now Cray), Suprenum, Stardent (Ardent+Stellar), Supercomputer Systems Inc., Synapse, Thinking Machines, Vitec, Vitesse, Wavetracer.

PACT'98 Gordon Bell

Talk outline

• Supercomputing from the past

- Architecture evolution
- Applications and algorithms
- Supercomputing for the future
 - Technology trends
 - Multidisciplinary top-down approach

• Conclusions

Grand challenge problems

- Systems biology -
 - Model & simulation leading to predictive models with clinical or environmental impact
- Sustainable Systems -
 - Taking into account multi-scale nature -Models are linked to experimental data - providing corroboration of experiments
- Turbulence & Chaos -
 - Characterize boundary layer effects and their impact on global solution and stability
- Environmental
 - Global Warming/Climate Change
 - Energy
 - Water
 - Biodiversity and land use
 - Chemicals, toxics and heavy metals
 - Air pollution
 - Waste management
 - Stratospheric ozone depletion
 - **Oceans & fisheries**
 - Deforestation

Multi-Scale Patient-Specific Data

Genetic Variability

Gene Protein ExpressionExpression **Profiling Profiling**

Parter storage

ice and enove

And Modeling

Enouge water starting

ITER design

- Supercomputing is mandatory for ITER design
- The most computing demanding problems for ITER design
 - Plasma turbulent transport (Gyro-kinetic codes)
 - Plasma Wall Interaction (DFT+MD+MC+DDD+FE codes)³
- Problems generally amenable to parallelisation
 - Gryo-kinetic codes tested till 10⁴ processors

- With a 100 TFlops state-of-the-art machine
 - Gyro-kinetic modelling of JET reactor (tokamak) in days
 - Stellarators are more challenging, but could be simulate
 - ITER needs at least a 10+PFlops machines

Airbus 380 Design

Heraklion, Crete, July 25th, 2008

Center

each sample cell Growth of solid grains initiates independently, but 1.6

BlueGene/L supports solidification understanding

- soon leads to grain boundaries which span the simulation cell
- The ddcMD team is currently using 131,072 CPUs of BG/L for unprecedented five hundred million atom MGPT simulations

Nucleation is initiated at multiple independent sites in

2005 Gordon Bell Prize WINNER 0.6

Lawrence Livermore National Laboratory Blue Gene/L Simulation Results Using ddcMD Code

Tasks (logscale)

2M atoms(16384 processors)

16M atoms(32768 processors)

100000

Contact: Fred Streitz

Talk outline

- Supercomputing from the past
 - Architecture evolution
 - Applications and algorithms

• Supercomputing for the future

- Technology trends
- Multidisciplinary top-down approach

• Conclusions

Technology Outlook

High Volume Manufacturing	2004	2006	2008	2010	2012	2014	2016	2018		
Technology Node (nm)	90	65	45	32	22	16	11	8		
Integration Capacity (BT)	2	4	8	16	32	64	128	256		
Delay = CV/I scaling	0.7	~0.7	>0.7	Delay scaling will slow down						
Energy/Logic Op scaling	>0.35 >0.5 >0.5 Energy scaling wi					aling will :	slow dowi	ו		
Bulk Planar CMOS		High Pr	obability	Low Probability						
Alternate, 3G etc	Itemate, 3G etc Low Probability				High Probability					
Variability	Medium			Hig	h	Very I	ligh			
ILD (K)	~3 <3			Reduce slowly towards 2-2.5						
RC Delay	1	1	1	1	1	1	1	1		
Metal Layers	6-7	7-8	8-9	0.5 to 1 layer per generation						

Shekhar Borkar, Micro37, P

Heraklion, Crete, July 25th, 2008
Increasing CPU performance: a delicate balancing act

Increasing the number of gates into a tight knot and decreasing the cycle time of the processor

We have seen increasing number of gates on a chip and increasing clock speed.

Heat becoming an unmanageable problem, Intel Processors > 100 Watts

We will not see the dramatic increases in clock speeds in the future.

However, the number of gates on a chip will continue to increase.

Talk outline

- Supercomputing from the past
 - Architecture evolution
 - Applications and algorithms

• Supercomputing for the future

- Technology trends
- Multidisciplinary top-down approach

• Conclusions

Multidisciplinary top-down approach

Multidisciplinary top-down approach

Intel's Petaflop chip

The key technologies of this first Tera-scale Research Prototype are a mesh interconnect (left) and support for 3D stacked memory (above).

- 80 processors in a die of 300 square mm.
- Terabytes per second of memory bandwidth
- Note: The barrier of the Teraflops was obtained by Intel in 1991 using 10.000 Pentium Pro processors contained in more than 85 cabinets occupying 200 square meters ⁽²⁾
- This will be possible in 3 years from now

Example Mesh

Heraklion, Crete, July 25th, 2008

Center Centro Nacional de Supercomputació

AMD's Next Generation Processor Technology

- Bit Manipulation extensions (LZCNT/POPCNT)
- SSE extensions (EXTRQ/INSERTQ, MOVNTSD/MOVNTSS)

AMD

The AMD Opteron™ CMP NorthBridge Architecture, Now and in the Future

Enhanced power

management and RAS

Ranger System Summary

- Compute power 504 Teraflops
 - 3,936 Sun four-socket blades
 - 15,744 AMD Opteron "Barcelona" processors
 - Quad-core, 2.0 GHz, four flops/cycle (dual pipelines)
- Memory 125 Terabytes
 - 2 GB/core, 32 GB/node
 - 132 GB/s aggregate bandwidth
- Disk subsystem 1.7 Petabytes
 - 72 Sun x4500 "Thumper" I/O servers, 24TB each
 - ~72 GB/sec total aggregate bandwidth
 - 1 PB in largest /work filesystem
- Interconnect 10 Gbps / 2.3 μsec latency
 - Sun InfiniBand-based switches (2) with 3456 ports each
 - Full non-blocking 7-stage Clos fabric
 - Mellanox ConnectX IB cards

Ranger: All Racks & Power In Place

Kilo-Instruction Processors: hitting the memory wall

4-way, out-of-order processor - SpecFP 2000 benchmarks, from [Cri00]

Kilo-Instruction Multiprocessors

You will see.... in 400 years from now people will get crazy

We have parallel systems today (Servers, HPC), but can we replace the "Big cores" with many small core that will run in parallel?

Dr. Avi Mendelson. Keynote at ISC-2007

Heraklion, Crete, July 25th, 2008

GeForce 8800 GPU Computing

Up to 12,288 active threads, 86.4 GB/s DRAM BW, 16 Streaming MP, 367 GFLOPS, 768 MB DRAM, 8GB/s PCIe Resources allocated at per-block granularity Host Input Assembler Thread Execution Manager **Parallel Data Parallel Data** Parallel Data **Parallel Data Parallel Data** Parallel Data **Parallel Data Parallel Data** Cache Cache Cache Cache Cache Cache Cache Cache Texture Texture **Texture** Texture Texture Texture Texture Texture Load/store Load/store Load/store Load/store Load/store _oad/store **Global Memory**

> Baccelona Supercomputing Center Centro Nacional de Supercomputación

The Evolution of Programmable Logic

DAC, UPC, Dec 2007

7

Heterogeneous Architectures Emerging

- New integrated architectures for HPC (Cray XT5h, SGI Altix 350/4700, SRC MAP, etc.)
- Socket plug-in modules (HyperTransport, FSB)
- Which system architecture to choose?

The CELL/B.E. chip

235 Mtransistors 235 mm²

Los Alamos National Laboratory

All future dates and specifications are estimations only; Subject to change without notice. Dashed outlines indifferent designs. Heraklion, Crete, Cuty 25(b, 2008

Multidisciplinary top-down approach

- Importance of the different networks in a Supercomputer
- Communication patterns from the applications
- Latency and bandwidth
- Overlapping Communication and Computation
- Multipath routing
- Optical interconnects

Network integration

- Between nodes
 - Infiniband, Myrinet, ...
 - 3D Torus

- Inside a node
 - Buses to memory

- Network on Chip
 - Buses: CellBE
 - Direct topologies: Intel's 80 core Polaris

Supercomputer networks

- In the last November Top10 list
 - 4 BlueGenes with 3D Torus Networks
 - 3 Cray XT4 also with 3D Torus Networks
 - 3 Xeon platforms with Infiniband
- 5 independent networks in BlueGene
 - 3D torus: point-to-point
 - Collective network: global operations
 - Global barriers and interrupts
 - Gbit ethernet: file I/O and host interface
 - Control network: boot, monitoring and diagnostics

Scientific workloads and network parameters

- Low impact of latency (5-10%), compared to bandwidth (-50% to 20%)
- Amber execution, 64 tasks; simulations with different bw and latency

Scientific workloads and network parameters (II)

Latency by bw (CPMD 256 processors)

- No impact of latency, only bandwidth is relevant
- CPMD execution, 256 tasks; simulations with different bw and latency

Speculative dataflow

Effects on bandwidth

Better routes, better mapping

Nacional de Supercomputacia

Evolution of Optical interconnects Time of Commercial Deployment (Copper Displacement):

	1980's	1990's	2000's	> 2010		
	WAN, MAN metro,long-haul	LAN campus, enterprise	System	Board module-module	Module chip-chip	Chip on-chip buses
					► Terabus	Program
<u>Distance</u>	10's – 100's km	10m – 2km	<10 intra <100 inter	< 1 m	< 10 cm	< 20 mm
# of lines	singles	tens	100's-1000's	1000's	10000's	100,000's
<u>Cost</u> (\$/Gb/s)	1000			1		10.6
Power (mW/Gb/s)	500			5	 ,	0.5
<u>Density</u> (Gb/s/mm²)	10 ⁻³			10		1000
Sith Electronic Components and Tachonicy Conference	May 29 – June	1, 2007	F.Doa	ny	IBM Research	4

Multidisciplinary top-down approach

Back to Babel?

Book of Genesis

"Now the whole earth had one language and the same words" ...

..."Come, let us make bricks, and burn them thoroughly. "...

..."Come, let us build ourselves a city, and a tower with its top in the heavens, and let us make a name for ourselves"...

And the LORD said, "Look, they are one people, and they have all one language; and this is only the beginning of what they will do; nothing that they propose to do will now be impossible for them. Come, let us go down, and confuse their language there, so that they will not understand one another's speech."

The computer age

Fortran & MPI

A simple case \odot : the Cell/B.E.

- Libraries
 - libSPE, DaCS, ALF, ...
 - Complete modification of your code
- Follow the standards (i.e. OpenMP)
 - Software cache (runtime/compiler)
 - Tiling and prefetching (compiler)
 - What about performance?
- New programming models
 - CellSs
 - Proof-of-concept implementations that may influence standards

A scaled view of architectures and programming models

<u>Cell/Grid/SMP Superscalar (StarSs)</u> standard sequential programming: "easy" "decent" performance Portable. One language, multiple run times

Propose new programming models: CellSs

- Simple programming model for the Cell/B.E. ...
 - allows easy porting of applications
 - oriented towards the exploitation of functional parallelism from a sequential application with annotated functions
- ... and a runtime system
 - dynamically exploits functional parallelism (true dependences)
 - removes false dependences (renaming)

Multidisciplinary top-down approach

Algorithm kernels

- Traditional Numerical Kernels
 continue
 - Sparse Linear algebra
 - Dense Linear Algebra
 - BLAS
 - Linear systems
 - Eigenvalues
 - Discretization methods (FD, FE, FV, BE)
 - FFT and other transforms
 - Random number generation
- Algorithm improvement in the last 20 years similar to Moore's Law
- Emphasis on
 - Memory bandwidth, QoS,...
 - Asynchronism, data flow

Method	Storage	Flops	
GE (banded)	n ⁵	n ⁷	
Gauss-Seidel	n ³	n⁵ log n	
Optima I SOR	n ³	n ⁴ log n	
CG	n ³	n ^{3.5} log n	
Full MG	n ³	n³	

Multidisciplinary top-down approach

The need of performance analysis tools: Who

- Users, application developers
 - To confirm assumed behavior (very often reality is different from preconceived)
 - Provide expectations of impact to be used for decision support
 - New machines
 - Tuning efforts \rightarrow potential rewards
- Operations
 - To plan and ensure proper resource utilization

load imbalance - L2 misses

- System developers
 - To understand global impact of proposed features

CEPBA-Tools environment

Performance analysis tools: issues

• Scalability

- Dynamic range: from long term behavior @ 10K cores to detailed impact of cache or core microarchitecture.
- Handling huge amounts of data.
- Intelligence
 - sumarizing / Datamining → useful information (leading to right decisions)
 - Models

Multidisciplinary top-down approach

Specfem3D: a "true" story

Center

o Nacional de Supercomputación

• Should I introduce asynchronous communication?

Specfem3D

 Should I introduce asynchronous communication?

Heraklion, Crete, July 25th, 2008

• Load Balance? Instructions and cache misses

Instructions_c1 @ Specfem3D_192.chop1.prv.gz - 0 × Begin time: 12516813 Semantic 🗖 Statistic Average value X-Axis End time: 12913026; Control Window: Instructions_c1 🔗 Data Window: L3 Data cache misses per 1000 instr 9 ANNA. Processors Т 瓢 1 All window Repeat All trace Analyze OK Instructions

@ 192 processors

Sources of unbalancing

- Intrinsic to the algorithm:
 - Non-perfect partitioning
 - Some applications need dynamic load balancing: (e.g. molecular dynamics)
 - Several computational phases
 - Data-dependent access pattern
- Caused by resources:
 - Cache misses
 - Processor heterogeneity in a chip/board
 - OS noise/user daemons: in some computing nodes the OS or user daemons could delay the running process
 - Network topology and contention

SMT priorities and load balancing

- Increasing the priority of the threads executing longer¹
- Assume a 4 process MPI application running on a POWER5
 - Further assume that P1 computes longer than P2, P3, P4
 - P1, P2 run on one core and P3, P4 in the other core
- Increasing throughput is not the solution to unbalance¹
- By increasing P1's priority the application execution time decreases

QoS through shared resource management

• Balance thread progress by managing the shared L2 cache

Multidisciplinary top-down approach

Power and money

200						
100			-			
0						

HC29	IK3L	Bety	Bety	Rety	iepty	HEAD	HC20
1.11.12		1	1 1 1				
anti-	- and loss					P	
U	U	U	U-12 19	0- <u>0.8</u>	0	U	11.00
#1	1026 	H28	1620 41	1623 #1	1020	9031 91	9020 41
			-	- 3			
" and the second		-			· market	- mater	
u++	u	11 11 10 +	U+12:00	u+u-+	и цж	10	U - 12/00 - +
-1 ^{NCD9}	#CIS	#1	-	=1	INCLA	w1	ect2
" yollow	Palitica	Panetter.	T maintain	-	Proper	-	T made
18 32-92	10 - C- C-	18-12-00 ····	14 14/00	10-00-	16	10-00	14 12 00
-, ⁸⁰¹	+PCEO	ant av.	Not Ai-		- 1 - 1	+1000	- PC00
*	-	X			-	Wand - F	-
	= yest	-	- 1			- part	- 200
n na	10	10. 	70 12.16	10-12-0	10.10	10-10.00	10 - 10 W
- PEDF		- 500	PE33	wit in .	*1	- 100	- 1021
			- 22		1.00		-
*	a periodication		* 🔚	- 00	-	in particular	* Fall Jart
10 (1-50)	10 -00-	11	10-12-00	10 10	10-00	11-50	10-12-00

Talk outline

- Supercomputing from the past
 - Architecture evolution
 - Applications and algorithms
- Supercomputing for the future
 - Technology trends
 - Multidisciplinary top-down approach

• Conclusions

Key issues

Education for Parallel Programming

Supercomputing and e-Science Consolider program

BSC-Microsoft Many-core Project

- Programming models for future many-core architectures
- Architectural support to programming models
 - OpenMP+TM
 - HW acceleration for Haskell
- Many-core architecture
- Power-aware

Heraklion, Crete, July 25th, 2008

An overall picture of the IBM MareIncognito project

- Our 10-100 Petaflop research project for BSC (2010)
- Port/develop applications to reduce time-to-production once installed
- Programming models (MPI, OpenMP, CellSuperScalar)
- Tools for application development and to support previous evaluations
- Evaluate node architecture (heavily multicored):
- Evaluate interconnect options

Staff Evolution

BSC-CNS has 195 members at October of 2007 and hailed from 23 different countries (Alemania, Argentina, Belgium, Brazil, Bulgaria, Canada, Colombia, China, Cuba, France, Germany, India, Ireland, Italy, Jordania, Lebanon, Mexico, Poland, Russia, Serbia, Turkey, the United Kingdom, the United States and Spain).

Thank you !

Heraklion, Crete, July 25th, 2008