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Motivation

Justin Rattner, Intel-MRL, Keynote lecture, Micro-32

Technology works against ILP: Faster clock rates => Lower ILP
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Processor Organization: Basic Concepts

� Instruction 
types:
� Load/Store
� Operation
� Control

Control

Unit

Memory

Instructions + Data

. . .

Register File

Instructions
load Rx := M[]

store M[] := Rx

Ri := Rj op Rk

Branch (cond.)

Processor
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Technological Achievements

� Transistor (Bell Labs, 1947)

� DEC PDP-1 (1957)

� IBM 7090 (1960)

� Integrated circuit (1958)

� IBM System 360 (1965)

� DEC PDP-8 (1965)

� Microprocessor (1971)

� Intel 4004
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2X transistors/Chip Every 1.5 years

Called “Moore’s Law”

Moore’s Law

Microprocessors have become 

smaller, denser, and more powerful.

Not just processors, bandwidth, 

storage, etc

Gordon Moore (co-founder of 

Intel) predicted in 1965 that the 

transistor density of semiconductor 

chips would double roughly every 

18 months. 

Technology Trends: 

Microprocessor Capacity
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Medium                  High                  Very HighVariability

Energy scaling will slow down>0.5>0.5>0.35Energy/Logic Op 
scaling

0.5 to 1 layer per generation8-97-86-7Metal Layers

11111111RC Delay

Reduce slowly towards 2-2.5<3~3ILD (K)

Low Probability                                  High ProbabilityAlternate, 3G etc

128

11

2016

High Probability                                  Low ProbabilityBulk Planar CMOS

Delay scaling will slow down>0.7~0.70.7Delay = CV/I scaling

256643216842Integration 
Capacity (BT)

8162232456590Technology Node 
(nm)

2018201420122010200820062004High Volume 
Manufacturing

Shekhar Borkar, Micro37, P

Technology Outlook
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Pipeline (H. Ford)
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Program Dependences

� Data dependences

� Control dependencies

a    Ri := …

b        := Ri op Rj

c    Ri := ...

DataData dependences
a and b (RAW)

Name dependences
b and c (WAR)
a and c (WAW)

.

.

.
a
.
.
.
b       branch (cond.) a

b+1

F D R E W

F D R E W

F D R E W

F D R E W

F D R E W

F D R E W

CU

Main Memory

. . .

RF



July 25th, 2008 Onassis Foundation        Heraklion, Crete 9

Superscalar  Processor
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Fetch of multiple instructions every cycle.

Rename of registers to eliminate added dependencies.

Instructions wait for source operands and for functional units.

Out- of -order execution, but  in order graduation.

Predict branches and speculative execution

J.E. Smith and S.Vajapeyam.¨Trace Processors…¨ IEEE Computer.Sept. 1997. pp68-74.
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Modern Superscalar Processors

Marco A. Ramírez Salinas, PhD Thesis, Barcelona July 9th, 2007
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Superscalar Processors

� Out of order (IPC <= 3)
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Assignment, use and release of Resources

ROB   IQ

LSQ 
registers

Release

---Assignment

Resource

CommitCommit

IQ(issued)Release

ROB IQ 
LSQ 
registers

Assignment
Resource

Decode, RenamingDecode, Renaming

FetchFetch

CommitCommit

Memory LatencyMemory Latency

i.ei.e, 1000 cycles, 1000 cycles

T. Karkhanis and J.Smith, “A day in the life of a data cache miss” Workshop Memory Performance Issues. ISCA-2002 

M.Valero. NSF Workshop on Computer Architecture. ISCA Conference. San Diego, June 2003

Short 

Latency

Long 

Latency
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Processor-DRAM Gap (latency)

µProc

60%/yr.

DRAM

7%/yr.
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D.A. Patterson “ New directions in Computer Architecture” Berkeley, June 1998
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Latencies and Pipelines
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128 in-flight inst.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

int 4way fp 4way int 8way fp 8way

IP
C 100

500

1000

latency

Memory Wall Problem

Memory latency has enormous impact on IPC

0.6X

0.45X

M. Valero. NSF Workshop on Computer Architecture. ISCA Conference. San Diego, June 2003
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Branch Instructions

Every 5-6 instructions

Limits to high-speed

b1

b2b3

b4b7 b6

b5

b0

b8

b1

b2b3

b4b7 b6

b5

b0

b8
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Rocket
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RocketRocket
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* * ““New Microarchitecture Challenges in the Coming Generations of CMNew Microarchitecture Challenges in the Coming Generations of CMOS Process TechnologiesOS Process Technologies”” ––

Fred Pollack, Intel Corp. Micro32 conference keynote Fred Pollack, Intel Corp. Micro32 conference keynote -- 1999.1999.

PentiumPentium®® 44
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Lower Lower 
VoltageVoltage

Increase Increase 
Clock RateClock Rate
& Transistor & Transistor 

DensityDensity

We have seen increasing number of gates on a chip and 
increasing clock speed.

Heat becoming an unmanageable problem, Intel 
Processors > 100 Watts

We will not see the dramatic increases in clock speeds in 
the future.

However, the number of                                          
gates on a chip will                                            continue 
to increase.

Increasing the number of gates into a tight knot and decreasing the cycle time of the processor

Increasing CPU performance: a delicate balancing act

Core

Cache

Core

Cache

Core

C1 C2

C3 C4

Cache

C1 C2

C3 C4

Cache

C1 C2

C3 C4

C1 C2

C3 C4

C1 C2

C3 C4

C1 C2

C3 C4
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Reducing Memory Latency

� Technology

� Caches

� Prefetching
� Hardware, Software and combined

� Assisted/SSMT Threads

� Runahead Processors

� ………

� “Kilo-instruction” Processor
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Motivation: The Memory Wall and KIPs

� Since the 80s processor frequencies have accelerated about 40% every year. 
� However, main memory access time has decreased much slower.

SPECINT2000 SPECFP2000
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Size of Instruction Window Size of Instruction Window

2.23x

1.29x0.6x 0.48x

KILO-Instruction Processors can overcome the 
Memory Wall for many codes, but how do we design 

them to be efficient in power and complexity?

KILO-Instruction Processors (KIPs)I

Cristal et al. (1st Proposal to Intel, 2001) + many later works
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“Kilo-instruction” Processors

� Our goals
� Better tolerate increasing memory latency

� Further improve ILP, even for such longer memory 
latency

� Allow additional optimizations enabled by the new 
architecture (See below)

� Our proposal: “Kilo-instruction” Processors
� Out-Of-Order processors with thousands of instructions 

in-flight (Very Large Instruction Windows)

� Intelligent use of resources (Resource requirements 
growing much slower than window size)
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“Kilo-instruction Processsor”

� It is not…..
� A “heavy” processor ☺
� Cyber-205 like processor
� Vector Processor
� Blue-Gene like
� Multiscalar,Trace Processor
� Raw, Imagine, Levo,TRIPS

� It is …….
� An Affordable O-O-O Superscalar Processor having 

“Thousands of In-flight Instructions”
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Outline
� Motivation
� Increasing the number of in-flight instructions
� Kilo-instruction Processor Ingredients:

� Multi-Checkpointing the ROB
• Out-of-Order Commit

� Early Release of Resources
• Ephemeral Registers
• Load Queues

� Locality Exploitation
• Instruction Queues
• LSQ

� Affordable KILO-Instruction Processors
� Cross-pollination with other techniques:

� “Kilo-processor” and multiprocessor systems
� “kilo-vector” processors and “kilo-valpred” processors
� “Kilo-SMT” processor
� Further Improvements:

• Branch prediction
• Control Independence
• Reuse
• Predicated and multipath execution

� Conclusion
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branch 3

ROB Activity
ROB Register File

IQ

x

x
x

branch 3
x
b
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load 2
x

branch
x

branch 1
x
a
x

load 1

load 1
a

branch 1
load 2

b
128-entry

1024-entry

fp

int

90%76%

72%62%

Lat=1000Lat=100

ROB full:

fp

int

75%50%

48%30%

Lat=1000Lat=100

ROB full:

M. Valero. NSF Workshop on Computer Architecture. ISCA Conference. San Diego, June 2003



Effect of Window Size on Performance (EQUAKE) 

Checkpointed
Architecture
(~3000 Insts)

Small
Window

Processor
(~200 Insts)

~0.3

~2.2

smvp() : matrix-vector product

x7 x7 x7



Impact of Memory Wall

SPECINT2000 SPECFP2000

The memory wall has a big impact on the performance on current hardware. Large-window processors 
can overcome this problem for many codes, but technology constraints limit the scalability of current designs
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Scalability

� Thousands of In-flight Instructions and 
In-Order Commit make designs impractical:
� ROB : Needs to maintain a copy of every in-

flight instruction

� IQs : Instructions depending on long latency 
instructions remain in these queues for a 
long time

� LSQs : Instructions remain in the queue 
until commit

� Registers : A new physical register for each 
instruction producing a new value

� We would like to get the IPC of thousands
of instructions in-flight without drastically
increasing resource requirements
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M. Valero. NSF Workshop on Computer Architecture. ISCA Conference. San Diego, June 2003
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Early Release of Resources

ROB   IQ

LSQ 
registers

Release

---Assignment

Resource

CommitCommit

IQ(issued)Release

ROB IQ 
LSQ 
registers

Assignment
Resource

Decode, RenamingDecode, Renaming

FetchFetch

CommitCommit

Memory LatencyMemory Latency

i.ei.e, 1000 cycles, 1000 cycles

T. Karkhanis and J.Smith, “A day in the life of a data cache miss” Workshop Memory Performance Issues. ISCA-2002 

M.Valero. NSF Workshop on Computer Architecture. ISCA Conference. San Diego, June 2003

Short 

Latency

Long 

Latency
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Outline

� Motivation
� Increasing the number of in-flight instructions
� Kilo-instruction Processor Ingredients:

� Multi-Checkpointing the ROB
• Out-of-Order Commit

� Early Release of Resources
• Ephemeral Registers
• Load Queues

� Locality Exploitation
• Instruction Queues
• LSQ

� Affordable KILO-Instruction Processors
� Cross-pollination with other techniques:

� “Kilo-processor” and multiprocessor systems
� “kilo-vector” processors and “kilo-valpred” processors
� “Kilo-SMT” processor
� Further Improvements:

• Branch prediction
• Control Independence
• Reuse
• Predicated and multipath execution

� Conclusion
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Checkpointing the ROB

� Checkpointing to support precise exceptions:
� Quite well established and used technique

• J.E. Smith and A.R. Pleszkun, ISCA 1985

• W.M.Hwu and Y.N.Patt, ISCA 1987

� Checkpointing to early release resources:
� Quite recent concept

• Cherry: J. Martínez et al., MICRO, Nov. 2002

• Large VROB: A. Cristal et al. TR-UPC-DAC, July 2002

M. Valero. NSF Workshop on Computer Architecture. ISCA Conference. San Diego, June 2003
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Checkpointing Example: MIPS Like

branch

branch

load

ROB
head

tail

logical physical

Architectural State

logical physical

Rename Table

logical physical

Checkpoint

logical physical

Checkpoint
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load 

branch

Nearby & Distant Parallelism

ROB Register File
load

Speculative

Replayable

f(X)

X

load 

branch

load 

branch

Balasubramonian et al.: “Dynamically Allocating Processor Resources…”, ISCA’01

Nearby

Distant
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Runahead Execution
ROB

x

x

x

branch 3

x

b

x

load 2

x

branch

x

branch 1

x

a

x

load 1

L2 cache miss

CheckpointCheckpoint

INV

INV

INV

INV

INV

Runahead Mode
- generate bogus value

- invalidate dep. registers

- continue execution

- Virtually increments ROB size

- Prefetch data of future loads

- Preexecution of Branches

Mutlu et al.: “Runahead Execution: An Alternative…”, HPCA’03 
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Cherry
ROB

branch

load

Early Release

- registers

- loads

- stores

Point of no return

(PNR)

Martínez et al.: “Cherry: Checkpointed Early Resource Recycling…”, MICRO’02 

irreversible

reversible

CherryCherry
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Multi-Checkpoint

IQ
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OOO commit
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branch 2
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load 3

Cristal et al.: “Large Virtual ROBs by Processor Checkpointing”, TR UPC-DAC, July 2002

Research Proposal  to Intel (January 2002) and  presentation to Intel-MRL Feb. 2002

branch 2 load 1load 1 arrivesarrives

GangGang commitcommit

CheckpointCheckpoint 11
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Checkpointing Description

� How many in-flight checkpoints should be supported?

� What kind of instructions should be checkpointed?

� How often should a checkpoint be taken?

� How much information should be kept?



July 25th, 2008 Onassis Foundation        Heraklion, Crete 37

Outline
� Motivation
� Increasing the number of in-flight instructions
� Kilo-instruction Processor Ingredients:

� Multi-Checkpointing the ROB
• Out-of-Order Commit

� Early Release of Resources
• Ephemeral Registers
• Load Queues

� Locality Exploitation
• Instruction Queues
• LSQ

� Affordable KILO-Instruction Processors
� Cross-pollination with other techniques:

� “Kilo-processor” and multiprocessor systems
� “kilo-vector” processor and “kilo-valpred” processors
� “Kilo-SMT” processor
� Further Improvements:

• Branch prediction
• Control Independence
• Reuse
• Predicated and multipath execution

� Conclusion
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Registers

� Register File is a critical component of a modern 
superscalar processor
� Large number of entries to support out-of-order 

execution and memory latency

� Large number of ports to increase issue width 

� Power and access time are key issues for register 
file design

� It is always beneficial, to reduce the number of 
physical registers
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� Conventional renaming scheme

� Virtual-Physical Registers

� Early Release

� Ephemeral Registers: checkpoint + virtual-physical

Physical Registers

Icache Decode&Rename Commit

Register Unused Register Used Register Unused

Register Used Register Unused

Register Unused Register Used

Register Used

T. Monreal et al.: “Delaying physical register allocation through virtual-physical registers”, MICRO’99

M. Moudgill et al, “Register renaming and dynamic speculation: an alternative approach”, MICRO93

T. Monreal et al., “Late allocation and early release of physical registers”, IEEE-TC (to appear)

J. Martínez et al, “Ephemeral Registers”, Technical Report CSL-TR-2003-1035 , 2003

A. Cristal et al, “Ephemeral Registers with Multicheckpointing” Technical report UPC-DAC-2003-51, Oct 2003 
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State of Registers (FP, ROB=2048)
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1168 1382 1607 1868 1955
Number of Instructions

A. Cristal, et al, “ A case for resource-concious out-of-order processors”, IEEE TCCA CA Letters, Vol. 2, Oct. 2003

Early Release

Late Allocation
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Outline
� Motivation
� Increasing the number of in-flight instructions
� Kilo-instruction Processor Ingredients:

� Multi-Checkpointing the ROB
• Out-of-Order Commit

� Early Release of Resources
• Ephemeral Registers
• Load Queues

� Locality Exploitation
• Instruction´s Queues
• LSQ

� Affordable KILO-Instruction Processors
� Cross-pollination with other techniques:

� “Kilo-processor” and multiprocessor systems
� “kilo-vector” processor and “kilo-valpred” processors
� “Kilo-SMT” processor
� Further Improvements:

• Branch prediction
• Control Independence
• Reuse
• Predicated and multipath execution

� Conclusion
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� Increasing the number of IQ entries increase the 
power, area and access time

� Wake-up and selection logic need to be done 
efficiently

� “Kilo-instruction” processors may have many “in-
flight” instructions

� We need new organization for the IQs in order to 
have affordable “kilo-instruction processors”

Issue Queues
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Marco A. Ramírez Salinas, PhD Thesis, Barcelona July 9th, 2007
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A new low power wakeup mechanism

Block Mapping Table

CAM-Blocks with explicit 
enable

Each in-flight instruction has an only identifier namely the Destination Register 
Tag

Marco A. Ramírez Salinas, PhD Thesis, Barcelona July 9th, 2007
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A new low power wakeup mechanism

Contributions:

Block Mapping Table Mechanism

Allow fast blocks enabling in wakeup phase

Power Reduction

1.5 comparison per committed instruction

Save:  ~70% of power for 32-entries queues

Hardware

Minimal hardware requirements

Publications:

[1] Marco A. Ramírez, A. Cristal, Luis Villa, Alex V. 
Veidenbaum and Mateo Valero "A Low-Power Instruction-
Queue Wakeup Mechanism " XIV Jornadas de Paralelismo ‘03 
Leganés-Madrid Spain.

[2] Marco A. Ramírez, A. Cristal, Luis Villa, Alex V. 
Veidenbaum and Mateo Valero "A Simple Low-Energy 
Instruction Wakeup Mechanism” International Symposium on 
High Performance Computer ’03 Tokyo Japan.

[3] M. A. Ramirez, A. Cristal, M. Valero, A. V. Veidenbaum
and L. Villa, A partitioned instruction queue to reduce 
instruction wakeup energy, International Journal of High 
Performance Computing and Networking ’04.

Marco A. Ramírez Salinas, PhD Thesis, Barcelona July 9th, 2007
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A RAM Queue design

MWT

RAM32X8

8W4R Ports

ST C M

Pointers Four 5-bits DECODERS

Mapping Table

RAM128X10

8W4R Ports

Ready

Counters

Six 5-bits DECODERS

SELECTION LOGIC

PAYLOAD RAM

RAM40X32

4W4R

4

8

1

1

ALLOCATION LOGIC

1

I0src1

I0src2

I1src1

I1src2

I2src1

I2src2

I3src1

T0Dest

T1Dest

T2Dest

T3Dest

4 Instructions from

Dispatch

4 Inst’s to

Execute

MCST

M0-5[0:2]

C0-5[0:4]

D0-3[0:39]

Ready Counter Update Logic

A0-3[0:2]

T4Dest

T5Dest

W0-5[0:6] T4Dest, T5Dest from LD queue

I3src2

A New Direct Instruction Wakeup Queue design

(all RAM + Traditional Selection Logic)

Marco A. Ramírez Salinas, PhD Thesis, Barcelona July 9th, 2007
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2

IQ

Execution Time of Instructions

� Lebeck et al., “A large, 
fast instruction window for 
tolerating cache misses”, 
ISCA-29, 2002.

� Brekelbaum et al., 
“Hierarchical scheduling 
windows”, ISCA-35, 2002.

� Cristal et al., “Out-of-
Order Commit Processors”, 
TR UPC-DAC-2003-44, 
July 2003 & HPCA-10, Feb. 
2004
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Load/Store Queues

� Efficient and affordable memory disambiguation is 
mandatory for kilo-instruction processors
� We need to guarantee that loads and stores arrive to the 

memory in the correct order 

� Increasing the number of in-flight instructions, 
can make the load/store queues a true bottleneck 
both in latency and power
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Cristal et al., “A case for resource-conscious out-of-order processors”, IEEE TCCA CA Letters, Vol. 2, 2003.

Cristal et al.: “Large Virtual ROBs by Processor Checkpointing”, TR UPC-DAC, July 2002

J.F. Martínez et al., “Cherry: checkpointer early resource recycling in out-of-order microprocessors”, MICRO-35, 2002.
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A. Cristal et al. “Kilo-instruction Processors”. Invited paper. ISHPC-V.Tokyo, LNCS-2858. October 20-22th, 2003
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IQs of 64 entries
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Outline
� Motivation
� Increasing the number of in-flight instructions
� Kilo-instruction Processor Ingredients:

� Multi-Checkpointing the ROB
• Out-of-Order Commit

� Early Release of Resources
• Ephemeral Registers
• Load Queues

� Locality Exploitation
• Instruction´s Queues
• LSQ

� Affordable Kilo-Instruction Processors:

� Cross-pollination with other techniques:
� “Kilo-processor” and multiprocessor systems
� “kilo-vector” processors and “kilo-valpred” processors
� “Kilo-SMT” processor
� Further Improvements:

• Branch prediction
• Control Independence
• Reuse
• Predicated and multipath execution

� Conclusion



54

58%

15% 6%
20%

A different view: D-KIP

About 70% High Locality

About 30% Low Locality

Cache 

Processor

Memory

Processor

F
E

T
C

H miss-dependent insts

� Processes only Cache Hit/Register dependent Insts 

� Latency Critical

� Buffer few instructions (<100)J

� Speculative / Out-of-Order 

� Executes most of control code

� LD/ST intensive

� Memory Lookahead (Prefetching)J

DECOUPLED KILO-INSTRUCTION PROCESSOR (HPCA'06, PACT'07)1

400 cycles
main memory
access latency

Distribution of Instructions based on Decode->Issue Latency

KILO-Instruction
processor model
2MB L2 Cache

measured in 
groups of 
30 cycles

SPEC FP 2000� Miss-dependent Instructions 

� Latency Tolerant

� Buffer thousands of instructions

� Relaxed Scheduling

� Little Control Code -> Few Recoveries

� Few address calculations

� No caches, No fetch/decode logic



Decoupled Kilo-Instruction Processor (D-KIP)

ADD2

LD

A

ADD1

LD

B

MISS HIT

MUL

Cache 

Processor

Memory

Processor

L
L
IB

Low Execution Locality

High Execution

Locality

Intermediate

Instruction

Buffering

A
D
D

1
 , [B

]

ADD1

r1 = A+B;

r2 = (B+imm1)*imm2;

• Code with short decode-to-issue distance (high locality code) is executed by a 
small "Cache Processor"
• Miss-dependent code with large decode-to-issue distance (low locality code)
migrates to a simpler "Memory Processor" through an in-order instruction buffer

Pericas et al, "A Decoupled KILO-Instruction Processor", HPCA-12 (2006) 

miss
returns



•multiple engines where each one processes a sequential subset of the low-
locality instruction window
•every engine performs multiple in-order scans emulating OoO
•use downsized engines (2wide, in-order) since execution of low-locality code 
is tolerant to additional latencies 
•commit/recovery like checkpointed architecture (one chkpt per engine)
•there is no back-communication from MP to CP except for recovery

The Flexible Heterogeneous MultiCore (I)

Cache Processor Memory Processor

Instruction Windowyoungest oldest

ROB

Pericas et al, "A Flexible Heterogeneous MultiCore Architecture", PACT-16 (2007)

The D-KIP architecture forces in-order processing of all low-locality code. Codes covered by
a disparity of miss latencies among parallel statements suffer an unnecessary penality

New Idea: Cache Processor + DataFlow Memory Processor

•small
•out-of-order



The Flexible Heterogeneous MultiCore (II)

FMC can be easily extended to share 
the back-end among threads

Engines are allocated based on the threads 
needs, incrementing throughput and fairness

Dynamically Assigned Pool of MEs

Cache Processors

ROB

ROB

ROB

Pericas et al, "A Flexible Heterogeneous MultiCore Architecture", PACT-16 (2007)



Designing a Load/Store Queue for FMC

Load Address Calculation Distance Store Address Calculation Distance

91%

95% 99%

94%

95%

99%

Pericas et al., "A two-level Load/Store Queue based on Execution Locality", ISCA-35 (2008)

Most addresses calculations have high locality!Address Calculation Distribution based on Decode-to-Issue Latency

� The original proposal of FMC used a centralized LSQ in the Cache Processor. 

� In this version, every load access the LSQ/Cache hierarchy from the Memory 
Processor pays a round trip penalty

� Using the ideas of Execution Locality we propose a new LSQ design for the FMC
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Epoch-based Load/Store Queue

� The Epoch-based Load/Store Queue is based on two main principles:
� Execution Locality (Classification of Loads/Stores into high and low locality)

� Local and Global Disambiguation

� High/Low Locality Distribution
� Same as in D-KIP / FMC

LQ

SQ

High Locality LSQ

LQ

SQ

Low Locality LSQ

Migrate Loads/Stores with known address or loads/stores
whose address calculation is miss-dependent (sooner or later all are migrated)

Partition Low-Locality LSQ

LQ

SQ

LQ

SQ

LQ

SQ

LQ

SQ

LQ

SQ

LQ

SQ

corresponding loads/stores
called a "Memory Epoch"

Pericas et al., "A two-level Load/Store Queue based on Execution Locality", ISCA-35 (2008)
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Epoch based Load/Store Queue: Disambiguation

� First Local Disambiguation: Traditional Method
� High-Locality LSQ Loads Search locally for forwarding Stores

� Epoch LSQs loads search locally for forwarding Stores

� Stores also search locally for store-load violation

LQ

SQ

search store queue

Address
Hash

Epochs
0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 011
@A

STORE ERT

Possibly Matching Stores
in Epochs 4 and 7

search (epoch 7);
if(!match) 

search (epoch 4);

Epoch Resolution Table:
• Tracks LL loads/stores
• Very simple:

•no counters
•column clean when engine is
commited

� Global Disambiguation: Consult ERT (Epoch Resolution Table)
� Only if Local Disambiguation does not return a definitive answer

Pericas et al., "A two-level Load/Store Queue based on Execution Locality", ISCA-35 (2008)



ELSQ: Global Picture

Thanks to local 
forwarding, ELSQ 
even outperforms
the Central LSQ in 
Cache Processor
model by 1-2%
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ERT

Pericas et al., "A two-level Load/Store Queue based on Execution Locality", ISCA-35 (2008)
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ELSQ: LSQ Network Utilization

� The network of LSQs has many interesting properties
that allow reduced-power operation:
� Around 50% of all cycles the Memory Processor is empty. Only

static power is consumed. Low-power techniques (e.g., sleep
transistors) can be applied.

� Due to high locality, LD/ST activity in the MP is very reduced. 
~80% of all searches happen in the Cache Processor.

� As ~98% of stores get their address in the CP, we can simplify
the architecture by forcing all stores to compute their
address in the CP. This completely eliminates the Load Queue
from the MP and has less than a 2% IPC penality.

Pericas et al., "A two-level Load/Store Queue based on Execution Locality", ISCA-35 (2008)
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Evaluation of Architecture: Parameters

� Several Architectures and Configurations are evaluated:
� Out-of-Order Processors with ROBs of 64 and 256 instructions (Issue Queue and 

Register File sized to avoid stalls)

� D-KIP model is implemented with:

• 4-way OoO 64-ROB Cache Processor (40-entries IQ, 96 registers)

• 2K FIFO Instruction Buffer

• 4-way In-Order Memory Processor

� FMC Parameters:

• 4-way OoO 64-ROB Cache Processor (40-entries IQ, 96 registers)

• 16 Memory Engines

• Memory Engines are 2-way & In-Order. Up to 128 long-latency instructions, 64 
loads and 32 stores per engine

� RunAhead is implemented on the OoO model with unlimited fully-associative 
runahead cache

� Stream prefetcher holding up to 64KB of prefetched data (up to 16 streams)

� Memory Latency: 400 cycles



Performance: SPECINT2000
•D-KIP and FMC perform similar to OoO-256-RA and OoO-256-Prefetch
•OoO-64-RA performs only slightly worse than OoO-256-RA and OoO-256-Pref: RA very resource-
efficient for integer programs

SPECINT2000 SPECFP2000

•D-KIP, FMC and OoO-64-RA outperform OoO-256 by 7% despite much smaller associative structures

•D-KIP-Pref and OoO-256-PrefRA have similar performance and slightly better than FMC-Pref



Performance: SPECFP2000

•FMC outperforms D-KIP by 12%, OoO-256-RA by 33% and OoO-256 by 56%

SPECINT2000 SPECFP2000

•FMC lookahead is so far and accurate that a prefetcher is no longer necessary
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Outline
� Motivation
� Increasing the number of in-flight instructions
� Kilo-instruction Processor Ingredients:

� Multi-Checkpointing the ROB
• Out-of-Order Commit

� Early Release of Resources
• Ephemeral Registers
• Load Queues

� Locality Exploitation
• Instruction´s Queues
• LSQ

� Cross-pollination with other techniques:
� “Kilo-processor” and multiprocessor systems
� “kilo-vector” processors and “kilo-valpred” processors
� “Kilo-SMT” processor
� Further Improvements:

• Branch prediction
• Control Independence
• Reuse
• Predicated and multipath execution

� Conclusion
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Motivation: multiprocessors
� Shared-Memory Multiprocessors: increased 

latencies
� Traversing interconnection hardware

• Centralized memory (SMP)

• Remote memories (DSM)

� Preserving cache coherence
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Evaluate potential
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M. Galluzzi et al. “ A First glance at Kiloinstruction Based Multiprocessors” Invited Paper. ACM Computing Frontiers 

Conference. Ischia, Italy, April 10-12, 2004

“Kilo-processor” and multiprocessor systems
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2. Transactional Memory 

� Programmer specifies large, atomic tasks
� atomic { some_work; }
� Multiple objects, unstructured control-flow, …
� Declarative: user simply specifies, system implements details

� TM simplifies parallel programming
� Parallel algorithms: non-blocking sync with coarse-grain code

• Performance = fine grain locks

� Sequential algorithms: speculative parallelization
� “All transactions all the time”

� Stanford Transactional Coherence & Consistency (TCC)

� Eases performance optimization
� Makes deterministic replay trivial

� Atomicity & isolation are generally useful
� For debugging, checkpointing, exception handling, garbage collection, 

security, compiler optimization
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Implicit transactions
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SC – explanation

Process A
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SC – using transactions

TR
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TR

B1
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A1
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� We allow:
� Re-ordering
� Overlapping
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Outline
� Motivation
� Increasing the number of in-flight instructions
� Kilo-instruction Processor Ingredients:

� Multi-Checkpointing the ROB
• Out-of-Order Commit

� Early Release of Resources
• Ephemeral Registers
• Load Queues

� Locality Exploitation
• Instruction´s Queues
• LSQ

� Cross-pollination with other techniques:
� “Kilo-processor” and multiprocessor systems
� “kilo-vector” processors and “kilo-valpred” processors
� “Kilo-SMT” processor
� Further Improvements:

• Branch prediction
• Control Independence
• Reuse
• Predicated and multipath execution

� Conclusion
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“Kilo-vector” processor

20 80
Program:

20 8
Program:

5
Program:

8

Kilo
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Speedup: 3.5

Speedup: 7.7

M. Valero Keynote at HPCA, Madrid-2003
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“Kilo-valpred” processor
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M. Valero Keynote at HPCA, Madrid-2003
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• Out-of-Order Commit

� Early Release of Resources
• Ephemeral Registers
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• Instruction´s Queues
• LSQ

� Cross-pollination with other techniques:
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� Further Improvements:

• Branch prediction
• Control Independence
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• Predicated and multipath execution
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Kilo and Control Independence

� Larger windows improve:
� The probability of finding the 

reconvergence point

� The correct detection of control

independent instructions 
because the wrong path is 
completely executed

� The execution of more control

independent instructions for 
later reuse

Wrong
path

Correct
path

RP

current
instruction
windows

kilo-instruction
windows

CI

M. Valero Keynote at HPCA, Madrid-2003
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Kilo and Control Independence

� More opportunities to find 
control independent 
instructions
� Squash reuse

� Control-independent instruction

reexecution removal

� Savings:
• Power/energy

• Execution bandwidth

• Resources

� Helps to go far ahead in the 
instruction window faster

% C.I. instructions
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INT

M. Valero Keynote at HPCA, Madrid-2003



Some Recent Work

� Transparent Control Independence is an interesting 
approach to overcome the control path problem:

to Issue 
Pipeline

ICache

Checkpoints

Repair
Rename

Map
Selecitve Re-Execution

Buffer (RXB) 

Only CD + CIDD Instructions 
are re-executed

Speculative
Rename

Map

CD + CI

correct CD

CD = Control-Dependent

CI = Control-Independent

CIDD = Control-Independent
Data-Dependent

to RXB Phys.
RF

Also stores input sources

Al-Zawawi et al., “Transparent Control Independence (TCI)”, ISCA-34 (2007)
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Superscalar Issue

Superscalar leads to more performance, but lower utilization

Time

J. Emer Compaq
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Multithreaded Processor
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Thread-1

Thread-2

Thread-n

Several  Threads  executed  concurrently

Threads  belong  to same / different  processes

HEP ( 1978 ), Alewife , M-Machine , Tera-Computer
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SMT  out-of-order

Fetch Decode

/Map

Queue Reg

Read

Execut

e

Dcache

/Store 

Buffer

Reg

Write

Retire

Icache

Dcache

PC

Register

Map

Regs Regs

J. Emer Compaq
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Fine Grained Multithreading

Intra-thread dependencies still limit performance

Time

J. Emer Compaq
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Simultaneous Multithreading

Maximum utilization of function units by independent operations

Time

J. Emer Compaq
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SMT Processor

RESOURCES
SHARED



July 25th, 2008 Onassis Foundation        Heraklion, Crete 90

SMT Processor

Threads share but also 

compete for shared 

resources
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Multi-Threaded Processors
� MT processors are used in a wide range of computing systems:

� High-performance: IBM Power5, Intel/AMD Quad-Core

� Real-Time: Infineon Tricore, Imagination Meta

� Network: Sun Niagara T1, Sun Niagara T2

L2 cache

Core 0

Core 1

Power5

2 cores 2-way SMT

10-way 2MB L2 cache

Intel Core Duo

2cores,  

8/16-way 2MB L2 cache

Niagara T2

8 cores 8-way FGMT

12-way 3MB L2 cache
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Ifetch policies
� Icount1:

� Threads with less instructions in the pre-issue stages are given high 
priority

� When a thread experiences an L2 miss: 
• It can monopolize resources

• In this case all threads are stopped

� Some Ifetch policies try to solve this problem
� Work on top of Icount

� Use  L1/L2 data cache misses as indicators of resource 
monopolization, 

� Stalling/squashing threads based on these indicators

[1] Tullsen et al.  "Exploiting Choice: Instruction Fetch and Issue on an Implementable Simultaneous Multithreading Processor “ (ISCA 96)
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IFetch Policies (II)

� Main fetch policies:
� Icount1: fetches from threads with fewer 

instructions in pre-execution stages

� Stall2: stops a thread if it experiences an L2 miss

� Flush2: in addition, flushes all instructions after the  
missing load

� Data Gating3: stops threads on every L1 data cache 
miss

� Does not take into account resource occupancy. 

� Basically they are a response actions to a given 
event

1 Tullsen et al. “Exploiting Choice: Instruction Fetch and Issue on an Implementable Simultaneous Multithreading Processor” (ISCA 96)  

2 Tullsen et al.   "Handling long-latency loads in a simultaneous multithreaded processor“ (MICRO 01)  

3 El-Moursy et al.  "Front-End Policies for Improved Issue Efficiency in SMT Processors“ (HPCA 03)  
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� memory-bound thread is stalled

� thread (T2) holds the resources

STALL

L2 miss detection

T1

T2

long-latency miss
���� STALL

time

ld
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� memory-bound thread is flushed

� thread (T2) frees the resources

� but it is also stopped

FLUSH

L2 miss detection

T1

T2

long-latency miss
� FLUSH

time

ld
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Enter in Runahead Execution

� When L2 miss reaches head of ROB
� checkpoint architectural state and 

� enter in runahead mode

long-latency miss
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Sources of Improvement
� Prefetching effect

� RaT allows memory-bound threads going 
speculatively in advance doing prefetching
• prefetches increase the MLP

• each thread itself is faster by RaT, without 
disturbing the other threads.

T1

T2

long-latency miss

time

prefetches

Runahead Thread

[1] T. Ramirez et al. “Runahead Threads to Improve SMT Performance”. HPCA 2008
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Sources of Improvement

�Alleviate resource contention

� RaT are much less aggressive than normal ones with the 
important SMT resources, allocating them in short 
periods of time

T1

T2

long-latency miss

timeRunahead Thread

Valid Instructions

INValid Instructions

don’t use resources free resources faster

[1] T. Ramirez  et al. “Runahead Threads to Improve SMT Performance”. HPCA 2008
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Evaluation - Fairness

� RaT performs better than flush and stall

55%

63%

� Significant 
for MEM 

workloads.
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� RaT again achieves better fairness regarding 
dynamic control policies

36%

71%

� for MEM 
workloads 
• 57% over 
DCRA  

• 53% over 
HillClimb

Evaluation – Fairness (II)
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RaT Sources of Improvement

� RaT benefits reduce register file up to 60%

0,0
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FLUSH RaT
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UPC contribution to “kilo” processors (1 of 3)

� We started our work in June 2001
� Grant proposal to Intel-MRL in January 28th. 2002

� A. Cristal, et al. “Large virtual ROBs by processor checkpointing” Technical 
Report UPC-DAC-2002-39, July 2002. (Rejected for Micro-2002)

• Multiple Checkpointing
• Out-of-order Commit, No need for ROB
• Early release of registers and loads

� A. Cristal and M. Valero, ”ROBs virtuales utilizando checkpointing”. Spanish 
Workshop on Parallelism. Lleida, Sept., 2002

• Same as the previous report, but in Spanish

� A. Cristal, J. Martínez,  M. Valero and J. Llosa, “Ephemeral Registers”, Technical 
Report CSL-TR-2003-1035 , 2003. Rejected for ISCA 2003 and Micro 2003

• Ckeckpoint + Early Release + Late allocation of registers
� A. Cristal, J. Martínez, J. LLosa and M. Valero, “ A case for resource-conscious 

out-of-order processors”, IEEE TCCA Computer Architecture Letters, Vol. 2, 
October 2003

• Underutilization of resources
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UPC contribution to “kilo” processors (2 of 3)
� A. Cristal, et al. “ A case for resource-conscious out-of-order processors: 

Towards Kilo-instruction in-flight processors”. MEDEA Workshop, Sept 2003 
and ACM-CAN, March 2004

� A. Cristal et al. “Kilo-instruction Processors”. Invited paper. ISHPC-V.Tokyo, 
LNCS-2858. October 20-22th, 2003

� A. Cristal et al. “Future ILP Processors”. Invited paper. IJHPCN, to be published
� A. Cristal, et al. “Out-of-Order Commit Processors” Technical Report UPC-DAC-

2003-44, July 2003. HPCA-10, Madrid, Feb. 2004
• Unified mechanism for Out-of-Order Commit and IQs management
• Use of Checkpointing and Ephemeral Registers

� M. Galluzzi et al. “ A First glance at Kiloinstruction Based Multiprocessors”
Invited Paper. ACM Computing Frontiers Conference. Ischia, Italy, April 10-12, 
2004

� E. Vallejo, M. Galluzzi, A. Cristal, F. Vallejo, R. Beivide, Per Stenström, James E. 
Smith and Mateo Valero. “Implementing Kilo-Instruction Multiprocessors”. 
Invited paper. IEEE Conference on Pervasive Services, ICPS-05. Santorini, 
Greece. July 11-14, 200 

� M. Galluzzi, E. Vallejo, A. Cristal, F. Vallejo, R. Beivide, P. Stenstrom, J. Smith 
and M. Valero. “Implicit Transactional Memory in Kilo-Instruction
Multiprocessor”. Invited paper. ACSAC-2007. The Twelfth Asia-Pacific 
Computer Systems Architecture Conference. Seoul, Korea, August 23-25, 2007. 
LNCS 4697, pp.339-353 
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� Pericas et al. “A decoupled KILO-Instruction Processor”, 
HPCA-12, Austin, Feb 2006
� Execution Locality Concept

� Decoupled Processor (Cache/Memory Processor)

� Pericas et al. “A Flexible Heterogeneous MultiCore
Architecture”, PACT-16, Brasov, Sept 2007
� DataFlow Memory Processor

� Shared Memory Processor

� Pericas et al. “A Two-Level Load/Store Queue based on 
Execution Locality”, ISCA-35, June 2008
� Locality-based LSQ + Local/Global Disambiguation

� Completes execution-locality based KILO-Instruction Processor

� More work being conducted at this point

UPC contribution to “kilo” processors (3 of 3)
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Talks about “Kilo” processors, from UPC
� Presentation in Barcelona, to Intel-MRL in February 2002
� Spanish Workshop on Parallelism. Lleida, Sept., 2002
� Presentation to Intel-MRL in March 2003
� Invited presentation. NSF  Panel “On the Future of Computer Architecture Research: 

Wise Views and Fresh Perspectives”. San Diego, June 2003 
� Invited Lecture. PA3CT Conference. Edegem, Belgium, September 22-23, 2003
� MEDEA Workshop. New Orleans, September 2003
� Invited Lecture. ISHPC-V. The 5th International Symposium on High Performance 

Computing. Tokyo, Japan, October 20-22, 2003
� Keynote lecture. Seminar on Compilers and Architecture. IBM Haifa. November 11th., 

2003.
� Invited lecture. Intel MRL. Haifa., Israel. Nov. 12th., 2003
� HPCA-10, Madrid, February 14-18, 2003
� Keynote lecture. HPCA-10. Madrid, February 14-18, 2003
� Invited lecture. ACM Computing Frontiers. Ischia, April, 2004
� ACM Invited lecture. ENCAR México, May 2004
� Keynote Lecture. Europar. Pisa, September 2004
� Distinguish lecture, Irvine, January 2006
� HPCA-12, Austin, February 2006
� PACT-16, Brasov, September 2007
� … several keynotes and Distinguish Lectures from ACM (India, México,..)
� Onassis Foundation. Haraklion, Crete, July 2008
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Memory Latency
� Jouppi and P. Ranganathan. “ The relative importance of 

memory latency, bandwidth and branch prediction”
Whorkshop on Mixing Logic and DRAM: Chips that compute 
and remember”, during ISCA-24, 1997

� S. Srinivasan and A. Lebeck, “ Load latency tolerance in 
dynamically scheduled processors”, Micro-31, 1998

� K. Skadron, P. Ahuja, M. Martonosi and D. Clark “Branch 
prediction, instruction window size and cache size: 
Performance tradeoffs and simulation techniques” IEEE-TC, 
pp. 1260-1281, 1999.

� Tejas Karkhanis and James E. Smith. “A Day in the Life of a 
Data Cache Miss”, 2nd Annual Workshop on Memory 
Performance Issues (WMPI), June, 2002.
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Large Reorder Buffers
� G. Sohi, S. Breach, and T. N. Vijaykumar “Multiscalar processors”

ISCA-22, 1995.

� E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith “Trace 
processors” ISCA-24, 1997

� H. Akkari and M. Driscoll “A dynamic multithreaded processor”
Micro-31, 1998

� R. Balasubramonian, S. Dwarkadas, and D. Albonesi.“Dynamically 
allocating processor resources between nearby and distant ilp”
ISCA, June 2001.

• Save some resources allocated for eager execution

� P. Ranganathan, V. Pai, and S. Adve “Using speculative retirement 
and large instruction windows to narrow the performance gap 
between memory consistency models” SPAA, 1997

� J. M. Tendler, S. Dodson, S. Fields, H. Lee, and B.  Sinharoy
“Power4 System Microarchitecture” IBM Journal of Research and 
Development, pp. 5-25, January 2002.
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Checkpointing

� J.E. Smith and A.R. Plezskun “Implementing Precise Interrupts in 
Pipelined Processors”, ISCA-12, 1985

� W.M. Hwu and Y. N. Patt, “Checkpoint repair for out-of-order 
execution machines” ISCA-14, 1987.

• Checkpointing as a recovery mechanism

� Early Release of Resources
� A. Cristal, M. Valero, and J. LLosa. “Large virtual ROBs by 

processor checkpointing” Technical Report UPC-DAC-2002-39, 
July 2002.
• Multiple Checkpointers
• Out-of-order Commit, No need for ROB
• Early release of registers and loads

� J.F. Martínez, J. Renau, M.C. Huang, M. Prvulovic, and J. 
Torrellas. Cherry: checkpointed early resource recycling in out-
of-order microprocessors. MICRO-35, Nov. 2002.
• One checkpoint
• Early release of resources
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Register File
� M. Moudgill and K. Pingali and S. Vassiliadis, “Register renaming and dynamic 

speculation: an alternative approach”, In Proceedings of the 26th annual 
international symposium on Microarchitecture, 1993.

• Early Release of Registers

� T. Monreal, A. González, M. Valero, J. González, V. Viñals, “Delaying Physical 
Register Allocation through Virtual-Physical Registers”, In Proceedings of 
the 33th annual international symposium on Microarchitecture, 1999.

• Virtual Registers, Late allocation of registers

� A. Cristal, J. Martínez,  M. Valero and J. Llosa, “Ephemeral Registers”, 
Technical Report CSL-TR-2003-1035 , 2003.

• Ckeckpoint + Early Release + Late allocation of registers

� T. Monreal et al., “Late allocation and early release of physical registers”, 
IEEE-TC (to appear in October 2004)



July 25th, 2008 Onassis Foundation        Heraklion, Crete 110

Instruction Queues

� S. Palacharla, N.P. Jouppi, and J.E. Smith “Complexity-effective 
superscalar processors” ISCA-24, 1997.

• Divide the Instruction queues in a set of FIFO queues

� A.R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and E. Rotenberg “A 
large, fast instruction window for tolerating cache misses” ISCA-
29, 2002.

• Remove-Reinsert Mechanism
• Keep the load dependence of all instructions

� E. Brekelbaum, J. Rupley, C.Wilkerson, and B. Black “Hierarchical 
scheduling windows” ISCA-35, 2002.

• Two clusters, a slow/big one, and a faster/small one for critical instructions

� A. Cristal, D. Ortega, J. Llosa and M. Valero “Out-of-Order Commit
Processors” Technical Report UPC-DAC-2003-44, July 2003. HPCA-
10, Madrid, Feb. 2004

• Remove-Reinsert Mechanism
• Simple reinsert mechanism
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References for LSQ for Large ROB

� A. Cristal, M. Valero, and J. LLosa. “Large virtual ROBs by processor checkpointing”
Technical Report UPC-DAC-2002-39, July 2002

� J.F. Martínez, J. Renau, M.C. Huang, M. Prvulovic, and J. Torrellas. “Cherry: 
checkpointed early resource recycling in out-of-order microprocessors”. MICRO-35, 
2002

� H. Akkari, R. Rajwar and S. T. Srinivasan “Checkpointing Processing and Recovery: 
Towards Scalable Large Instruction Window Processors” Micro-36, 2003

� S. Sethumadhavan, R. Desikan, D. Burger, C.R. Moore and S. W. Keckler “Scalable 
Hardware Memory Disambiguation for High ILP Processors” Micro-36, 2003

� H. W. Cain et al. “Memory Ordering: A Value-based approach”, ISCA-32, 2004

� A. Roth, “Store Vulnerability Window (SVW): Re-Execution Filtering for Enhanced 
Load Optimization”, ISCA‘-33, 2005
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Conclusion
� Affordable “Kilo-instruction Processors”
� Checkpointing and resource-conscious architectures 

� Out-of- order commit
� Ephemeral registers
� Two-level instruction queues
� Early release of loads
� Load/store queue management

� New ideas to watch for
� Better branch predictors
� Predication and Multi-path execution
� Control and data independent instructions
� Reuse of large blocks of instructions

� New processor paradigms:
� “Kilo-based” multiprocessor systems
� “Kilo-vector” processors
� “Kilo-SMT” processors
� “Kilo-valpred” processors
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Thank you very much ☺


