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Structure of the Lectures
1. Introduction
2. Static timing analysis

1. the problem
2. our approach
3. the success
4. tool architecture

3. Cache analysis
4. Pipeline analysis
5. Value analysis
-----------------------------------------------------------
1. Timing Predictability

• caches
• non-cache-like devices
• future architectures

2. Conclusion



Industrial Needs
Hard real-time systems, often in safety-critical 

applications abound
– Aeronautics, automotive, train industries, manufacturing control

Wing vibration of airplane, 

sensing every 5 mSec

Sideairbag in car,

Reaction in <10 mSec



Hard Real-Time Systems

• Embedded controllers are expected to finish 
their tasks reliably within time bounds.

• Task scheduling must be performed

• Essential: upper bound on the execution times of 
all tasks statically known 

• Commonly called the Worst-Case Execution Time 
(WCET)

• Analogously, Best-Case Execution Time (BCET)



Static Timing Analysis 

Embedded controllers are expected to finish 
their tasks reliably within time bounds.

The problem:

Given

1. a software to produce some reaction, 

2. a hardware platform, on which to execute the
software,

3. required reaction time.

Derive: a guarantee for timeliness.



What does Execution Time Depend on?

• the input – this has always 
been so and will remain so,

• the initial execution state of 
the platform – this is 
(relatively) new,

• interferences from the 
environment – this depends on 
whether the system design 
admits it (preemptive 
scheduling, interrupts).

Caused by caches, 
pipelines, speculation etc.

Explosion of the space of 
inputs and initial states 

⇒ no exhaustive 
approaches feasible.

“external” interference 
as seen from analyzed 
task



Modern Hardware Features

• Modern processors increase (average-case) 
performance by using: 
Caches, Pipelines, Branch Prediction, Speculation

• These features make bounds computation difficult:
Execution times of instructions vary widely
– Best case - everything goes smoothly: no cache miss, 

operands ready, needed resources free, branch correctly 
predicted

– Worst case - everything goes wrong: all loads miss the 
cache, resources needed are occupied, operands are not 
ready

– Span may be several hundred cycles



Access Times
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Notions in Timing Analysis

worst-case performance
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Timing Analysis and Timing Predictability

• Timing Analysis derives upper (and maybe 
lower) bounds

• Timing Predictability of a HW/SW system is 
the degree to which bounds can be determined
– with acceptable precision,

– with acceptable effort, and

– with acceptable loss of (average-case) performance.

• The goal (of the Predator project) is to find a 
good point in this 3-dimensional space.



Timing Analysis 
A success story for formal methods!



aiT WCET Analyzer

IST Project DAEDALUS final 
review report: 

"The AbsInt tool is probably the

best of its kind in the world and it 

is justified to consider this result 

as a breakthrough.”

Several time-critical subsystems of the Airbus A380 

have been certified using aiT;

aiT is the only validated tool for these applications.



Tremendous Progress
during the past 13 Years
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High-Level Requirements for 
Timing Analysis

• Upper bounds must be safe, i.e. not 
underestimated

• Upper bounds should be tight, i.e. not far 
away from real execution times

• Analogous for lower bounds

• Analysis effort must be tolerable

Note: all analyzed programs are terminating, 
loop bounds need to be known ⇒

no decidability problem, but a complexity problem!



Our Approach

• End-to-end measurement is not possible 
because of the large state space.

• We compute bounds for the execution times of 
instructions and basic blocks and determine a 
longest path in the basic-block graph of the 
program.

• The variability of execution times
– may cancel out in end-to-end measurements, but 

that’s hard to quantify,

– exists  “in pure form” on the instruction level.



Timing Accidents and Penalties

Timing Accident – cause for an increase 
of the execution time of an instruction

Timing Penalty – the associated increase
• Types of timing accidents

– Cache misses
– Pipeline stalls
– Branch mispredictions
– Bus collisions
– Memory refresh of DRAM
– TLB miss



Execution Time is History-Sensitive

Contribution of the execution of an instruction to 
a program‘s execution time 

• depends on the execution state, e.g. the time 
for a memory access depends on the cache 
state

• the execution state depends on the execution 
history

• needed: an invariant about the set of execution 
states produced by all executions reaching a 
program point.

• We use abstract interpretation to compute 
these invariants.



Deriving Run-Time Guarantees

• Our method and tool, aiT, derives Safety 
Properties from these invariants : 
Certain timing accidents will never happen.
Example: At program point p, instruction 
fetch will never cause a cache miss.

• The more accidents excluded, the lower
the upper bound.

Murphy’s
invariant

Fastest Variance of execution times Slowest



Abstract Interpretation in Timing Analysis

• Abstract interpretation is always based 
on the semantics of the analyzed 
language.

• A semantics of a programming language 
that talks about time needs to 
incorporate the execution platform!

• Static timing analysis is thus based on 
such a semantics.



The Architectural Abstraction 
inside the Timing Analyzer

Timing analyzer

Architectural abstractions

Cache
Abstraction

Pipeline 
Abstraction

Value 
Analysis, 
Control-Flow
Analysis,
Loop-Bound
Analysis

abstractions of
the processor’s
arithmetic



Abstract Interpretation in Timing Analysis

Determines

• invariants about the values of variables 
(in registers, on the stack)
– to compute loop bounds

– to eliminate infeasible paths

– to determine effective memory addresses

• invariants on architectural execution state
– Cache contents ⇒ predict hits & misses

– Pipeline states ⇒ predict or exclude pipeline stalls



Tool Architecture

Abstract Interpretations

Abstract Interpretation
Integer Linear
Programming



Tool Architecture

Abstract Interpretations

Abstract Interpretation
Integer Linear
Programming

Caches



Caches: 
Small & Fast Memory on Chip

• Bridge speed gap between CPU and RAM
• Caches work well in the average case:

– Programs access data locally (many hits)
– Programs reuse items (instructions, data)
– Access patterns are distributed evenly across

the cache

• Cache performance has a strong influence on 
system performance!



Caches vs. Scratchpads – an Undecided Battle

- Caches are energy hungry,
+ some cache architectures are nicely predictable.

The alternative are compiler-managed scratchpads,
+ scratchpads are economical wrt. energy,
- they need to be explicitly saved and loaded,
- they do not perform well under preemptive scheduling 

schemes and in interrupt-driven systems.
Some architects avoid caches because they don’t know how 

to analyze the behavior.



Caches: How they work

CPU: read/write at memory address a,
– sends a request for a to bus

Cases:
• Hit: 

– Block m containing a in the cache: 
request served in the next cycle

• Miss:
– Block m not in the cache:

m is transferred from main memory to the cache, 
m may replace some block in the cache,
request for a is served asap while transfer still 
continues

a

m



Replacement Strategies

• Several replacement strategies: 

LRU, PLRU, FIFO,...
determine which line to replace when a 
memory block is to be loaded into a full 
cache (set)



LRU Strategy
• Each cache set has its own replacement logic => 

Cache sets are independent: Everything explained 
in terms of one set

• LRU-Replacement Strategy:
– Replace the block that has been Least Recently Used

– Modeled by Ages

• Example: 4-way set associative cache

age 3210

m0 m1
Access m4 (miss) m4 m2

m1
Access m1 (hit) m0m4 m2

m1m5Access m5 (miss) m4 m0

m0       m1 m2 m3



Cache Analysis

How to statically precompute cache contents:

• Must Analysis:

For each program point (and context), find out which blocks 

are in the cache → prediction of cache hits

• May Analysis:                                                      

For each program point (and context), find out which blocks 

may be in the cache

Complement says what is not in the cache → prediction of 

cache misses

• In the following, we consider must analysis until otherwise 

stated.



(Must) Cache Analysis
• Consider one instruction in 

the program.

• There may be many paths 

leading to this instruction.

• How can we compute 

whether a will always be in 

cache independently of 

which path execution 

takes?

load a

Question: 
Is the access to a 
always a cache hit?



Determine Cache-Information
(abstract cache states) at each Program Point

{a, b}
{x}

youngest age - 0

oldest age - 3

Interpretation of this cache information:
describes the set of all concrete cache states
in which x, a, and b occur

• x with an age not older than 1

• a and  b with an age not older than 2,

Cache information contains
1. only memory blocks guaranteed to be in cache.
2. they are associated with their maximal age.



Cache- Information

Cache analysis
determines safe 
information about 
Cache Hits.
Each predicted Cache 
Hit reduces the upper 
bound by the cache-
miss penalty. 

load a
{a, b}

Computed
cache information

Access to a is a cache hit;
assume 1 cycle access time.

{x}



Cache Analysis – how does it work?

• How to compute for each program point an 
abstract cache state representing a set of 
memory blocks guaranteed to be in cache
each time execution reaches this program
point?

• Can we expect to compute the largest set?

• Trade-off between precision and 
efficiency – quite typical for abstract
interpretation



(Must) Cache analysis of a memory access

{a, b}
{x}

access to a

{b, x}

{a}

After the access to a,

a is the youngest memory
block in cache, 
and we must assume that
x has aged.
What about b?

b
a

access to a

b

a

x

y

y

x

concrete
transfer
function
(cache)

abstract
transfer
function
(analysis)



Combining Cache Information
• Consider two control-flow paths to a program point:

– for one, prediction says, set of memory blocks S1 in cache,

– for the other, the set of memory blocks S2.

– Cache analysis should not predict more than S1 ∩ S2 after the merge of paths.

– the elements in the intersection should have their maximal age from S1 and S2.

• Suggests the following method: Compute cache information along all paths to 
a program point and calculate their intersection – but too many paths!

• More efficient method: 

– combine cache information on the way,

– iterate until least fixpoint is reached.

• There is a risk of losing precision, not in case of distributive transfer
functions.



What happens when control-paths merge?

{ a }

{   }

{ c, f }

{ d }

{ c }

{ e }

{ a }

{ d }

{   }

{   }

{ a, c }

{ d }

“intersection
+ maximal age”

We can
guarantee
this content

on this path.

We can
guarantee

this content

on this path.
Which content

can we
guarantee

on this path?

combine cache information at each control-flow merge point



Must-Cache and May-Cache- Information

• The presented cache analysis is a Must 
Analysis. It determines safe information 
about cache hits.
Each predicted cache hit reduces the 
upper bound.

• We can also perform a May Analysis. It 
determines safe information about cache 
misses 
Each predicted cache miss increases the 
lower bound.



(May) Cache analysis of a memory access

{a, b}
{x}

access to a

{x}

{a}

Why? After the access to a

a is the youngest memory block in cache, 
and we must assume that x, y and b have aged.

{b, z}

{y}

{z}

{y}



Cache Analysis: Join (may)
{ a }

{   }

{ c, f }

{ d }

{ c }

{ e }

{ a }

{ d }

{ a,c }

{ e}

{ f }

{ d }

“union
+ minimal age”

Join (may)



Result of the Cache Analyses

  Category Abb.   Meaning 
 
 

  

  always hit ah   The memory reference will 

  always result in a cache hit. 

  always miss am   The memory reference will 

  always result in a cache miss. 

  not classified nc   The memory reference could 

  neither be classified as ah 

  nor am. 
 

 

Categorization of memory references



Abstract Domain: Must Cache
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Abstraction

Representing sets of concrete caches by their description

concrete caches

{ }

{ }

{z,x}

{s}

abstract cache



Abstract Domain: Must Cache

{ }

{ }

{z,xz,xz,xz,x}

{ssss}

γ

Concretization

{s∈{
z, xz, xz, xz, x ∈

Sets of concrete caches described by an abstract cache

remaining line filled up
with any other block

concrete caches

abstract cache

over-approximation!



Abstract Domain: May Cache

z
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{z ,s, x}
{ t }
{ }

{ a }

α

Abstraction

abstract cache

concrete caches



Abstract Domain: May Cache

γ

Concretization

{z,s,x}
{ t }
{ }

{ a }

abstract may-caches say
what definitely is not in cache
and what the minimal age of 
those is that may be in cache.

∈{z,s,x}
∈{z,s,x,t}
∈{z,s,x,t}
∈{z,s,x,t,a}

concrete caches

abstract cache



Cache Analysis

Over-approximation of the Collecting Semantics

the semantics set of all cache states
for each program point

determines

“cache” semantics set of cache states
for each program point

determines

abstract semantics abstract cache states
for each program point

determines

conc

Collecting semantics
collects at each program
point all states that any
execution may encounter

there.

reduces the program
to the sequence of
memory references



Complete Lattices: 
The Mathematics of Semantic Domains

Bottom element ?

Top element >

a

v
bInformation order v

Convention: b more precise than a

a b
t

Join operator t combines information

Set A of elementsRelation between t and v:

a v b iff a t b = b

(A, v, t, u, >, ?)



Lattice for Must Cache

• Set A of elements

• Information order v

• Join operator t

• Top element >

• Bottom element ?

{ }

{ }

{z,x}

{s}

Abstract cache states:

Upper bounds on the age 

of memory blocks  

guaranteed to be in cache

“young”

“old”

Age



Lattice for Must Cache

• Set A of elements

• Information order v

• Join operator t

• Top element >

• Bottom element ?

{ }

{ }

{z}

{s}

{ }

{z}

{x}

{s}

v

“young”

“old”

Age

Better precision:

more elements in the cache or 

with younger age.

NB. The more precise abstract 

cache represents less 

concrete cache states!



Lattice: Must Cache

• Set A of elements

• Information order v

• Join operator t

• Top element >

• Bottom element ?

{ a }

{   }

{ c, f }

{ d }

{ c }

{ e }

{ a }

{ d }

{   }

{   }

{ a, c }

{ d }

t

Form the intersection and

associate the elements with

the maximum of their ages

“young”

“old”

Age



Lattice: Must Cache

• Set A of elements

• Information order v

• Join operator t

• Top element >

• Bottom element ?

{ }

{ }

{ }

{ }

“young”

“old”

Age

No information:

All caches possible



Lattice: Must Cache

• Set A of elements

• Information order v

• Join operator t

• Top element >

• Bottom element ?
Dedicated unique bottom 

element representing the 

empty set of caches



Galois connection –
Relating Semantic Domains

• Lattices C, A
• two monotone functions ® and °

• Abstraction: ®: C → A
• Concretization °: A → C
• (®,°) is a Galois connection

if and only if
° • ® wC idC and  ® • ° vA idA

Switching safely between concrete and abstract
domains, possibly losing precision



Abstract Domain Must Cache
° • ® wC idC

z
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x
s
z
t

z
s
x
t

s
z
x
t

z
t
x
s

{ }

{ }

{z,x}

{s}

α

γ

safe, but may lose 

precision

{s∈{
z, xz, xz, xz, x ∈

concrete caches

abstract cache

remaining line
filled up with any
memory block



Correctness of the Abstract 
Transformer

Abstract transfer
function f#

°

Concrete transfer
function f

°

concrete
caches

Abstract
cache

Abstract
cache

⊆



Semantics II
Cousot‘s Best Transformer

°

Abstract transfer
function f#

Concrete transfer
function f

®

cache
states

Abstract
cache

Abstract
cache

{a, b}
{x}

a

{b, x}

{a}

You remember the 
abstract transfer 
function?

f# =® ± f ± °



Lessons Learned

• Cache analysis, an important ingredient of 
static timing analysis, provides for 
abstract domains, 

• which proved to be sufficiently precise,

• have compact representation,

• have efficient transfer functions,

• which are quite natural.



An Alternative Abstract Cache Semantics: 
Power set domain of cache states

• Set A of elements - sets of concrete
cache states

• Information order v  - set inclusion

• Join operator t - set union

• Top element > - the set of all cache 
states

• Bottom element ? - the empty set of 
caches



Power set domain of cache states

• Potentially more precise

• Certainly not similarly efficient

• Sometimes, power-set domains are the 
only choice you have → pipeline analysis



Problem Solved?

• We have shown a solution for LRU caches.
• LRU-cache analysis works smoothly

– Favorable „structure“ of domain
– Essential information can be summarized compactly

• LRU is the best strategy under several aspects
– performance, predictability, sensitivity

• … and yet: LRU is not the only strategy
– Pseudo-LRU (PowerPC 755 @ Airbus)
– FIFO
– worse under almost all aspects, but average-case

performance!



Abstract Interpretation – the Ingredients

• Abstract domain –
complete lattice (A, v, t, u, >, ?)

• (monotone) abstract transfer functions for 
each statement/condition/instruction

• information at program entry points



Instantiating an Abstract Interpretation

Given control-flow graph of a program with 
statements/conditions/instructions at 
edges

• associate abstract transfer function with 
each edge

• associate lattice join with control-flow 
merge points

• induces a recursive set of equations



Solving Static Analysis Problems

control
flow
graph

recursive
equation
system

abstract
transfer
functions

solution

Abstract
Domain

Fixpoint
Solver

Must-Caches
May-Caches
Intervals



Solving Static Analysis Problems
by Fixpoint Iteration

control
flow
graph

recursive
equation
system

abstract
transfer
functions

Abstract
Domain

Fixpoint
Solver

X=f(X) Kleene iteration:
X0 = ?
Xi+1=f(Xi)

h
e
igh

t

solution

Ascending
Chain
Condition:
+ Must-Caches
+ May-Caches
- Intervals



Solving Static Analysis Problems
Widening

control
flow
graph

recursive
equation
system

abstract
transfer
functions

Abstract
Domain

Fixpoint
Solver

X=f(X) Kleene iteration:
X0 = ?
Xi+1=f(Xi)

solution

Enforcing
Termination:
widening



Contribution to WCET

while  . . .  do [max n]  
.
.
.

ref to s
.
.
.

od

time

tmiss

thit

loop time

n ∗ tmiss

n ∗ thit

tmiss + (n − 1) ∗ thit

thit + (n − 1) ∗ tmiss



Contexts

Cache contents depends on the Context, 

i.e. calls and loops

while cond do

join (must)

First Iteration loads the cache =>

Intersection loses most of the information!



Distinguish basic blocks by 
contexts

• Transform loops into tail recursive 
procedures

• Treat loops and procedures in the same 
way

• Use interprocedural analysis 
techniques, VIVU
– virtual inlining of procedures
– virtual unrolling of loops

• Distinguish as many contexts as useful
– 1 unrolling for caches
– 1 unrolling for branch prediction (pipeline)



Structure of the Lectures
1. Introduction
2. Static timing analysis

1. the problem
2. our approach
3. the success
4. tool architecture

3. Cache analysis
4. Pipeline analysis
5. Value analysis
-----------------------------------------------------------
1. Timing Predictability

• caches
• non-cache-like devices
• future architectures

2. Conclusion



Tool Architecture

Abstract Interpretations

Abstract Interpretation
Integer Linear
Programming

Pipelines



Hardware Features: Pipelines

Ideal Case: 1 Instruction per Cycle

Fetch

Decode

Execute

WB

Fetch

Decode

Execute

WB

Inst 1 Inst 2 Inst 3 Inst 4

Fetch

Decode

Execute

WB

Fetch

Decode

Execute

WB

Fetch

Decode

Execute

WB



Pipelines

• Instruction execution is split into several
stages

• Several instructions can be executed in parallel

• Some pipelines can begin more than one
instruction per cycle: VLIW, Superscalar

• Some CPUs can execute instructions out-of-
order

• Practical Problems: Hazards and cache misses



Pipeline Hazards

Pipeline Hazards:
• Data Hazards: Operands not yet available 

(Data Dependences)
• Resource Hazards: Consecutive 

instructions use same resource
• Control Hazards: Conditional branch
• Instruction-Cache Hazards: Instruction 

fetch causes cache miss



Cache analysis: prediction of cache hits on instruction or 

operand fetch or store

Cache analysis: prediction of cache hits on instruction or 

operand fetch or store

Static exclusion of hazards

lwz r4, 20(r1) Hit

Dependence analysis: elimination of data hazardsDependence analysis: elimination of data hazards

Resource reservation tables: elimination of resource hazardsResource reservation tables: elimination of resource hazards

add r4, r5,r6

lwz r7, 10(r1)

add r8, r4, r4
Operand

ready

IF

EX

M

F



CPU as a (Concrete) State Machine

• Processor (pipeline, cache, memory, 
inputs)  viewed as a big state machine, 
performing transitions every clock cycle

• Starting in an initial state for an 
instruction 
transitions are performed, 
until a final state is reached:
– End state: instruction has left the pipeline

– # transitions: execution time of instruction



A Concrete Pipeline Executing a Basic Block

function exec (b : basic block, s : concrete pipeline state) 
t: trace

interprets instruction stream of b starting in state s
producing trace t.

Successor basic block is interpreted starting in initial
state last(t)

length(t) gives number of cycles



An Abstract Pipeline Executing a Basic Block

function exec (b : basic block, s : abstract pipeline state) 
t: trace

interprets instruction stream of b (annotated
with cache information) starting in state s
producing trace t

length(t) gives number of cycles



What is different?

• Abstract states may lack information, e.g. about cache 
contents.

• Traces may be longer (but never shorter).

• Starting state for successor basic block? 
In particular, if there are several predecessor blocks.

s2s1
s?

Alternatives:

• sets of states

• combine by least upper bound (join),

hard to find one that 

• preserves information and

• has a compact representation.



Non-Locality of Local Contributions

• Interference between processor components 
produces Timing Anomalies:
– Assuming local best case leads to higher overall 

execution time.
– Assuming local worst case leads to shorter overall 

execution time
Ex.: Cache miss in the context of branch prediction

• Treating components in isolation may be unsafe
• Implicit assumptions are not always correct:

– Cache miss is not always the worst case!
– The empty cache is not always the worst-case 

start!



An Abstract Pipeline Executing a Basic Block
- processor with timing anomalies -

function analyze (b : basic block, S : analysis state) T: set
of trace

Analysis states = 2PS x CS 

PS = set of abstract pipeline states

CS = set of abstract cache states

interprets instruction stream of b (annotated with cache
information) starting in state S producing set of traces
T

max(length(T)) - upper bound for execution time

last(T) - set of initial states for successor block

Union for blocks with several predecessors. 

S2S1
S3 =S1 ∪S2



Integrated Analysis: Overall 
Picture

Basic Block

s1

s10

s2 s3

s11 s12

s1

s13

Fixed point iteration over Basic Blocks (in 

context)  {s1, s2, s3} abstract state

move.1 (A0,D0),D1

Cyclewise evolution of  processor model

for instruction

s1 s2 s3



Classification of Pipelines

• Fully timing compositional architectures:
– no timing anomalies.
– analysis can safely follow local worst-case paths only, 
– example: ARM7.

• Compositional architectures with constant-
bounded effects: 
– exhibit timing anomalies, but no domino effects,
– example: Infineon TriCore

• Non-compositional architectures: 
– exhibit domino effects and timing anomalies.
– timing analysis always has to follow all paths,
– example: PowerPC 755



Characteristics of Pipeline Analysis

• Abstract Domain of Pipeline Analysis
– Power set domain

• Elements: sets of states of a state machine

– Join: set union

• Pipeline Analysis
– Manipulate sets of states of a state machine

– Store sets of states to detect fixpoint

– Forward state traversal

– Exhaustively explore non-deterministic choices



Abstract Pipeline Analysis
vs Model Checking

• Pipeline Analysis is like state traversal in 
Model Checking

• Symbolic Representation: BDD 

• Symbolic Pipeline Analysis: 

Topic of on-going dissertation



Nondeterminism

• In the reduced model, one state resulted
in one new state after a one-cycle
transition

• Now, one state can have several
successor states
– Transitions from set of states to set of 

states



Implementation
• Abstract model is implemented as a DFA
• Instructions are the nodes in the CFG
• Domain is powerset of set of abstract states
• Transfer functions at the edges in the CFG 

iterate cycle-wise updating each state in the
current abstract value

• max {# iterations for all states} gives
WCET 

• From this, we can obtain WCET for basic
blocks



Why integrated analyses?

• Simple modular analysis not possible for 
architectures with unbounded 
interference between processor 
components

• Timing anomalies (Lundqvist/Stenström): 
– Faster execution locally assuming penalty

– Slower execution locally removing penalty

• Domino effect: Effect only bounded in 
length of execution



Timing Anomalies

Let ∆Tl be an execution-time difference between 
two different cases for an instruction,

∆Tg the resulting difference in the overall execution 
time.

A Timing Anomaly occurs if either 
• ∆Tl< 0: the instruction executes faster, and 

– ∆Tg < ∆T1: the overall execution is yet faster, or 
– ∆Tg > 0: the program runs longer than before. 

• ∆Tl > 0: the instruction takes longer to execute, 
and    
– ∆Tg > ∆Tl: the overall execution is yet slower, or 
– ∆Tg < 0: the program takes less time to execute than 

before



Timing Anomalies

∆Tl< 0 and ∆Tg > 0: 
Local timing merit causes global timing 
penalty
is critical for WCET: 
using local timing-merit assumptions is 
unsafe 

∆Tl > 0 and ∆Tg < 0:
Local timing penalty causes global speed up
is critical for BCET:
using local timing-penalty assumptions is 

unsafe 



Tool Architecture

Abstract Interpretations

Abstract Interpretation
Integer Linear
Programming



Value Analysis
• Motivation: 

– Provide access information to data-cache/pipeline 
analysis

– Detect infeasible paths
– Derive loop bounds

• Method: calculate intervals at all program points, 
i.e. lower and upper bounds for the set of 
possible values occurring in the machine program 
(addresses, register contents, local and global 
variables) (Cousot/Cousot77)



Value Analysis II

• Intervals are computed along the

CFG edges

• At joins, intervals are „unioned“

D1: [-2,+2] D1: [-4,0]

D1: [-4,+2]

move.l #4,D0

add.l D1,D0

move.l (A0,D0),D1

D1: [-4,4], A[0x1000,0x1000]

D0[4,4], D1: [-4,4],

A[0x1000,0x1000]

D0[0,8], D1: [-4,4],

A[0x1000,0x1000]

access [0x1000,0x1008]Which address is accessed here?



Interval Domain 

(-1,0]

(-1,-1]

[-2,2] [0,1)

[1,1)

[-2,0]

[-2,-1]

[-2,1]

[-1,1] [0,2]

[-1,0] [0,1] [1,2]

[2,2][1,1][0,0][-1,-1][-2,-2]

[-1,2]

(-1,1)

[-1,1)(-1,1]

1
h
e
ig
h
t



Interval Analysis in Timing Analysis

• Data-cache analysis needs effective 
addresses at analysis time to know where 
accesses go.

• Effective addresses are approximatively
precomputed by an interval analysis for 
the values in registers, local variables

• “Exact” intervals – singleton intervals,
• “Good” intervals – addresses fit into less 

than 16 cache lines.



Value Analysis (Airbus Benchmark)

Task Unreached Exact Good Unknown Time [s] 

1 8% 86% 4% 2% 47 

2 8% 86% 4% 2% 17 

3 7% 86% 4% 3% 22 

4 13% 79% 5% 3% 16 

5 6% 88% 4% 2% 36 

6 9% 84% 5% 2% 16 

7 9% 84% 5% 2% 26 

8 10% 83% 4% 3% 14 

9 6% 89% 3% 2% 34 

10 10% 84% 4% 2% 17 

11 7% 85% 5% 3% 22 

12 10% 82% 5% 3% 14 

 

1Ghz Athlon, Memory usage <= 20MB



Tool Architecture

Abstract Interpretations

Abstract Interpretation
Integer Linear
Programming



• Execution time of a program =

∑ Execution_Time(b) x 
Execution_Count(b)

• ILP solver maximizes this function to 
determine the WCET

• Program structure described by linear 
constraints
– automatically created from CFG structure
– user provided loop/recursion bounds
– arbitrary additional linear constraints to 

exclude infeasible paths

Basic_Block b

Path Analysis 
by Integer Linear Programming (ILP)



if  a  then 

b

elseif c  then

d

else

e

endif

f

a

b

c

d

f

e

10t

4t

3t

2t

5t

6t

max: 4 xa + 10 xb + 3 xc +

2 xd + 6 xe + 5 xf

where xa =  xb +  xc

xc =  xd +  xe

xf =  xb +  xd +  xe

xa =  1

Value of objective function: 19

xa 1

xb 1

xc 0

xd 0

xe 0

xf 1

Example (simplified 
constraints)
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Timing Predictability

Experience has shown that the precision of results 
depend on system characteristics 

• of the underlying hardware platform and 
• of the software layers
• We will concentrate on the influence of the HW 

architecture on the predictability
What do we intuitively understand as 

Predictability?
Is it compatible with the goal of optimizing 

average-case performance?
What is a strategy to identify good compromises?



Structure of the Lectures
1. Introduction
2. Static timing analysis

1. the problem
2. our approach
3. the success
4. tool architecture

3. Cache analysis
4. Pipeline analysis
5. Value analysis
-----------------------------------------------------------
1. Timing Predictability

• caches
• non-cache-like devices
• future architectures

2. Conclusion



Predictability of 
Cache Replacement Policies



Uncertainty in Cache Analysis

read 

y

mul 
x, y

read 

x

write 

z

1. Initial cache contents?

2. Need to combine information

3. Cannot resolve address of x...

4. Imprecise analysis domain/

    update functions

    Need to recover information:

 Predictability = Speed of Recovery



Metrics of Predictability:
..
.

..
.

..
.

[f,e,d]

[f,e,c]

[f,d,c]

[h,g,f]

fill
evict

Seq:   a   b   c   d   e   f   g   h

Two Variants:

M = Misses Only

HM

evict & fill



Meaning of evict/fill - I

• Evict: may-information:
– What is definitely not in the cache?

– Safe information about Cache Misses

• Fill: must-information:
– What is definitely in the cache?

– Safe information about Cache Hits



Meaning of evict/fill - II

Metrics are independent of analyses:

� evict/fill bound the precision of any
static analysis!

� Allows to analyze an analysis:
Is it as precise as it gets w.r.t. the metrics?



Replacement Policies

• LRU – Least Recently Used
Intel Pentium, MIPS 24K/34K

• FIFO – First-In First-Out (Round-robin)
Intel XScale, ARM9, ARM11

• PLRU – Pseudo-LRU

Intel Pentium II+III+IV, PowerPC 75x

• MRU – Most Recently Used



MRU - Most Recently Used

MRU-bit records whether line was 
recently used

Problem: never stabilizes

e

c
b,d

c „safe“

for 5 acc.



Tree maintains order:

Problem: accesses „rejuvenate“
neighborhood

Pseudo-LRU

c

�

e

�



Results: tight bounds



Results: tight bounds

Generic examples prove tightness.



Results: instances for k=4,8

Question: 8-way PLRU cache, 4 instructions per line

Assume equal distribution of instructions over

256 sets:

How long a straight-line code sequence is needed to 
obtain precise may-information?



Future Work I

• OPT = theoretical strategy, 
optimal for performance

• LRU = used in practice,
optimal for predictability

• Predictability of OPT?

• Other optimal policies for predictability?

OPT for performance

LRU for predictability=
?



Future Work II

Beyond evict/fill:

• Evict/fill assume complete uncertainty

• What if there is only partial 
uncertainty?

• Other useful metrics?



LRU has Optimal Predictability,
so why is it Seldom Used?

• LRU is more expensive than PLRU, Random, etc.

• But it can be made fast
– Single-cycle operation is feasible [Ackland JSSC00] 

– Pipelined update can be designed with no stalls

• Gets worse with high-associativity caches
– Feasibility demonstrated up to 16-ways

• There is room for finding lower-cost highly-
predictable schemes with good performance



LRU algorithm

LRU stack
MRU LRU

12 3 45 607

Hit in 0
MRU LRU

1 3 4 602 5 7

• Trivial, but requires an associative search-and-shift 
operation to locate and promote a bank to the top of the 
stack. 

• It would be too time consuming to read the stack from 
the RAM, locate and shift the bank ID within the stack, 
and write it back to the RAM in a single cycle.



LRU HW implementation

[Ackland JSSC00] LRU info is available in one cycle

• LRU-RAM produces LRU states for lines @ current ADDR

• Stores updates when state is written back: LRU is available 

at the same cycle when a MISS is detected



LRU RAM Update Circuit

• Three-cycle operation
1. LRU RAM is read

2. LRU info is updated

3. LRU RAM is written

• Pipelined with forwarding paths to eliminate 
hazards MRU LRU

12 3 45 607

If STACK[0] ≠ NEW 

STACK[0]<= NEW;

STACK[1]<= STACK[0];

If STACK[i] ≠ NEW

STACK[i+1]<= STACK[i];



Beyond evict/fill

Evolution of may- /must-information
(PLRU):

may/must-
set sizes

distinct 
access 

sequence

evict(k) fill(k)

log k +1

k
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Extended the Predictability 
Notion

• The cache-predictability concept applies 
to all cache-like architecture 
components:

• TLBs, BTBs, other history mechanisms



The Predictability Notion

Unpredictability
• is an inherent system property
• limits the obtainable precision of static predictions about 

dynamic system behavior
Digital hardware behaves deterministically (ignoring 

defects, thermal effects etc.)
• Transition is fully determined by current state and input
• We model hardware as a (hierarchically structured, 

sequentially and concurrently composed) finite state 
machine

• Software and inputs induce possible (hardware) 
component inputs



Uncertainties About State and Input

• If initial system state and input were known, only  
one execution (time) were possible.

• To be safe, static analysis must take into account 
all possible initial states and inputs.

• Uncertainty about state implies a set of starting 
states and different transition paths in the 
architecture.

• Uncertainty about program input implies possibly 
different program control flow.

• Overall result: possibly different execution times

Ed wants to 
forbid this!



Source and Manifestation of 
Unpredictability

• “Outer view” of the problem: Unpredictability 
manifests itself in the variance of execution 
time

• Shortest and longest paths through the 
automaton are the BCET and WCET

• “Inner view” of the problem: Where does the 
variance come from?

• For this, one has to look into the structure of 
the finite automata



Variability of Execution Times

• is at the heart of timing unpredictability,
• is introduced at all levels of granularity

– Memory reference
– Instruction execution
– Arithmetic 
– Communication

• results, in some way or other, from the 
interference on shared resources.



Connection Between Automata and 
Uncertainty

• Uncertainty about state and input are 
qualitatively different:

• State uncertainty shows up at the “beginning” ≅
number of possible initial starting states the 
automaton may be in.

• States of automaton with high in-degree lose 
this initial uncertainty.

• Input uncertainty shows up while “running the 
automaton”.

• Nodes of automaton with high out-degree 
introduce uncertainty.



State Predictability – the Outer View

Let T(i;s) be the execution time with component input i
starting in hardware component state s.

The range is in [0::1], 1 means perfectly timing-predictable

The smaller the set of states, the smaller the variance 
and the larger the predictability.

The smaller the set of component inputs to consider, 
the larger the predictability.



Input Predictability



Comparing State Predictability
- on the basis of the variance -

• statically scheduled processors more 
predictable than dynamically scheduled,

• static branch prediction more predictable than 
dynamic branch prediction,

• processor without cache more predictable than 
processor with cache,

• scheduling on several levels is most 
unpredictabe

• independent cache sets are more predictable 
than dependent cache sets

• separate I- and D-caches are more predictable 
than uniform caches



Predictability – the Inner View

• We can look into the automata:

• Speed of convergence

• #reachable states

• #transitions/outdegree/indegree



Processor Features of the MPC 
7448

• Single e600 core, 600MHz-
1,7GHz core clock

• 32 KB L1 data and instruction 
caches

• 1 MB unified L2 cache with ECC
• Up to 12 instructions in 

instruction queue
• Up to 16 instructions in parallel 

execution
• 7 stage pipeline
• 3 issue queues, GPR, FPR, 

AltiVec
• 11 independent execution units



Processor Features (cont.)
• Branch Processing Unit

– Static and dynamic branch prediction
– Up to 3 outstanding speculative branches
– Branch folding during fetching

• 4 Integer Units
– 3 identical simple units (IU1s), 1 for complex operations (IU2)

• 1 Floating Point Unit with 5 stages
• 4 Vector Units
• 1 Load Store Unit with 3 stages

– Supports hits under misses
– 5 entry L1 load miss queue
– 5 entry outstanding store queue
– Data forwarding from outstanding stores to dependent loads

• Rename buffers (16 GPR/16 FPR/16 VR)
• 16 entry Completion Queue

– Out-of-order execution but In-order completion



Challenges and Predictability
• Speculative Execution

– Up to 3 level of speculation due to unknown branch 
prediction

• Cache Prediction
– Different pipeline paths for L1 cache hits/misses
– Hits under misses
– PLRU cache replacement policy for L1 caches

• Arbitration between different functional units
– Instructions have different execution times on IU1 

and IU2
• Connection to the Memory Subsystem

– Up to 8 parallel accesses on MPX bus
• Several clock domains

– L2 cache controller clocked with half core clock
– Memory subsystem clocked with 100 – 200 MHz



Architectural Complexity 
implies

Analysis Complexity

Every hardware component whose state has an 
influence on the timing behavior

• must be conservatively modeled, 

• contributes a multiplicative factor to the size 
of the search space.

History/future devices: all devices concerned
with storing the past or predicting the future.



Classification of Pipelines

• Fully timing compositional architectures:
– no timing anomalies.
– analysis can safely follow local worst-case paths only, 
– example: ARM7.

• Compositional architectures with constant-
bounded effects: 
– exhibit timing anomalies, but no domino effects,
– example: Infineon TriCore

• Non-compositional architectures: 
– exhibit domino effects and timing anomalies.
– timing analysis always has to follow all paths,
– example: PowerPC 755



Recommendation for Pipelines

• Use compositional pipelines; 
often execution time is dominated by
memory-access times, anyway.

• Static branch prediction only;

• One level of speculation only



More Threats created by 
Computer Architects

• Out-of-order execution

• Speculation

• Timing Anomalies,
i.e., locally worst-case path does not lead to the 
globally worst-case path, e.g., a cache miss can 
contribute to a globally shorter execution if it 
prevents a mis-prediction.

Consider all possible 
execution orders

ditto

Considering the locally
worst-case path insufficent



First Principles

• Reduce interference on shared resources.

• Use homogeneity in the design of 
history/future devices.



Interference on Shared Resources

• can be real
– e.g., tasks interfering on buses, 

memory, caches

• can be virtual, introduced by 
abstraction, e.g.,
– unknown state of branch predictor 

forces analysis of both transitions ⇒
interference on instruction cache

– are responsible for timing anomalies

real non-determinism

artificial 
non-determinism



Design Goal: 
Reduce Interference on Shared 

Resources

• Integrated Modular Avionics (IMA) goes 
in the right direction – temporal and 
spatial partitioning for eliminating logical 
interference

• For predictability: extension towards the 
elimination/reduction of physical 
interference



Shared Resources between 
Threads on Different Cores

• Strong synchronization 
⇒ low performance

• Little synchronization 
⇒ many potential interleavings
⇒ high complexity of analysis



Recommendations for Architecture Design

Architecture follows application: 
Exploit information about the application
in the architecture design.

Design architectures to which applications
can be mapped without introducing extra 
interferences.

Form follows function,

(Louis Sullivan)



Recommendation for Application 
Designers

• Use knowledge about the architecture to 
produce an interference-free mapping.



Separated Memories

• Characteristic of many embedded 
applications: little code shared between 
several tasks of an application ⇒
separate memories for code of threads 
running on different cores



Shared Data

• Often: 
– reading data when task is started, 
– writing data when task terminate

• deterministic scheme for access to 
shared data memory 
required cache performance determines
– partition of L2-caches 
– bus schedule

• Crossbar instead of shared bus



Conclusion

• Feasibility, efficiency, and precision of 
timing analysis strongly depend on the 
execution platform.

• Several principles were proposed to 
support timing analysis.
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