

Onassis Science Lecture

Jul. 5, 2023

Strong Field OBD Experiment Dronned With a NULLEPV Laser

Chang Hee Nam

Center for Relativistic Laser Science, Institute for Basic Science; Dept of Physics & Photon Science, GIST

Overview: Strong field QED research

A. Laser-driven electron accelerationB. Nonlinear Compton scattering

Laser Wakefield Electron Acceleration

Electrons pushed out by ponderomotive force and pulled back by the Coulomb force of ions → Creation of an electron plasma wave → Acceleration of an injected electron bunch

by the plasma wave

Huge acceleration field > 100 GeV/m

Wake waves by ship Surfing to the wave

LWFA with structured PW laser pulses

Coherent Control of Laser-Matter Interactions

Control of spectral phase: GDD

26 J on target, focal spot ~ 35 micron, Ne ~ 1.4×10^{18} /cc, 10 mm cell length

Control of spectral phase: GDD+TOD

Electrons over 2 GeV from a 10-mm gas cell

Gas cell length = 10 mm Positively chirped 61 fs Intensity = $2x10^{19}$ W/cm² (a₀=3)

 E_e > 2 GeV after GDD and TOD control

HT Kim et al., Sci Rep (2017)

PW Laser Experimental Area

PW Laser Experimental Area (2018)

Target chamber for LWFA with 4 PW laser

Pair production from vacuum

Vacuum fluctuations (quantum vacuum)

Creation and annihilation of electron-positron pairs occurs continually in quantum vacuum.

$$\delta E = mc^{2}$$

$$\rightarrow \delta t = \hbar/mc^{2}$$

$$\rightarrow \delta x = c\delta t = \hbar/mc = \overline{\lambda}_{c}$$

Schwinger field (E_S) for nonlinear optics in vacuum Field-driven pair production over $\overline{\lambda}_C$ in vacuum $eE_S\overline{\lambda}_C = m_ec^2$ where $\overline{\lambda}_C = \frac{\hbar}{m_ec} = 3.9 \times 10^{-11}$ cm $E_S = \frac{m_e^2c^3}{e\hbar} = 1.3 \times 10^{16}$ V/cm: Schwinger limit $I_S = 2 \times 10^{29}$ W/cm²: the corresponding laser intensity

Strong Field Quantum Electrodynamics (QED)

quantum electrodynamics (QED): relativistic quantum field theory of electrodynamics (quantum mechanics + special relativity)

QED: anomalous magnetic moment of electron Lamb shift of the energy levels of hydrogen (${}^{2}S_{1/2}$ and ${}^{2}P_{1/2}$)

χ_{e} : quantum nonlinearity parameter for strong-field QED

Field-driven pair production over $\overline{\lambda}_C$ with field ($F_{\mu\nu}$) and electron (p_{μ})

$$\chi_e = \frac{1}{m_e c^2} \frac{\bar{\lambda}_C}{c} \sqrt{\left(\frac{e}{m_e} F_{\mu\nu} p^{\nu}\right)^2} = \frac{E_{\text{proper}}}{E_S}$$
$$\Rightarrow 2\nu E / E_e \text{ for a coup}$$

 $\Rightarrow 2\gamma E/E_{\rm S}$ for a counterpropagating relativistic electron

Pair production when $\chi_e \gtrsim 1$, For a rest electron, $I \sim I_S = 2 \times 10^{29} \text{ W/cm}^2$ for $\chi_e = 1$ For a 2.5-GeV electron, $I \sim 10^{-8}I_S = 2 \times 10^{21} \text{ W/cm}^2$ for $\chi_e = 1$

Compton scattering

Compton scattering:

the scattering of an x-ray or gamma-ray photon with an electron, resulting in a decrease in energy (increase in wavelength) of the photon

 $\lambda' - \lambda = \frac{h}{mc} (1 - \cos \theta),$ or $E_{\gamma'} = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{mc^2} (1 - \cos \theta)},$ with $E_{\gamma} = \frac{hc}{\lambda}$

A. H. Compton, Phys. Rev. **21**, 483 (1923). (x-ray source: Mo *K_a* at 17 keV)

Problems to be tacked at Washington Univ in St. Louis (memorandum written in his return journey to US from Cambridge in 1920)

Compton scattering bet. an ultra-relativistic electron & a photon

Inverse Compton scattering (Compton back-scattering):

a high-energy charged particle transfers part of its energy to a photon, resulting in an increase in energy (decrease in wavelength) of the photon.

Nonlinear Compton scattering in a strong EM field

Energy-momentum conservation under a background EM field

$$p^{\mu} + rac{a_0^2 m^2 c^2}{4k_{
m V} p^{
m V}} k^{\mu} + nk^{\mu} = p'^{\mu} + rac{a_0^2 m^2 c^2}{4k_{
m V} p'^{
m V}} k^{\mu} + k'^{\mu}$$

classical nonlinearity parameter: $a_0 = \frac{eE_0}{m\omega c} = \frac{eA_0}{mc^2}$

Energy of the scattered photon

$$\varepsilon_{\gamma'} = \hbar \omega' = \hbar c k' = \frac{n \gamma^2 (1 + \beta \cos \alpha)}{\gamma^2 (1 - \beta \cos \theta) + \left[\frac{n \gamma \varepsilon_L}{m c^2} + \frac{a_0^2/4}{1 + \beta \cos \alpha}\right] [1 + \cos(\theta - \alpha)]} \varepsilon_L$$

$$(\varepsilon_L = \hbar \omega_0)$$

For
$$\beta \approx 1, \theta \approx 0$$
, $\varepsilon_{\gamma \prime} = \frac{2n\gamma^2(1+\cos\alpha)}{1+\frac{a_0^2}{2}+\frac{2n\gamma\varepsilon_L}{m_ec^2}(1+\cos\alpha)}\varepsilon_L$

Bamber et al., PRD 60, 092004 (1999); Melissinos, Strong Field Laser Physics, 497 (2008)

Strong field QED: All-optical Compton scattering

Generation of Multi-GeV Electron Beams

2 1.5

3

GeV

Laser: 25 fs, $I \approx 2 \times 10^{19}$ W/cm² (a₀ \approx 3); target: He + 3% Ne

- linear pol. @800 nm, 25 fs
- Gas cell with He +3%Ne
- Focusing with f=12m (f/# = 43)

Low divergence ~ 1mrad Low Energy Spread <2% 100-200 shots per day Charge: up to 350 pC Energy: up to 3.5 GeV

Reproducible monochromatic electron beam

All Optical Nonlinear Compton Scattering Experiment

Geometry for nonlinear Compton scattering

Experimental Setup for Nonlinear Compton Scattering

Temporal synchronization for Compton scattering

Spatial interferogram in the setup 1

- The visibility of interference varied with the time delay.
- The zero time delay was set where the visibility is the highest.

*** visibility**, $\eta' = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$

 $\eta' = 0.40 \times \exp\left(-\frac{\Delta t^2}{2 \times 23.5^2}\right) + 0.32$ $\implies |\Delta t_{mea}| = \sqrt{2 \times 23.5^2 \times \ln\frac{0.40}{(\eta' - 0.32)}} (fs)$ accuracy of time delay $\left(\frac{\sum_{i=1}^{n}(\Delta t_{mea} - \Delta t_{stage})_i^2}{n}\right)$: 11 fs

23

Temporal synchronization for Compton scattering (2)

Real-time delay monitoring with a spectral interferometer in the setup 2

For the time delay > 20 fs the temporal jitter measured was 7 fs

Experimental Chamber of Compton Scattering

Diagnostics of Gamma-ray beam

Demonstration of nonlinear Compton scattering

Clear measurement of Compton scattering signal!

Reconstruction methods

Two methods were applied to reconstruct the gamma-ray spectra.

Simultaneous Iterative Reconstruction **Technique (SIRT)**

NO Functional form assumed for the spectrum, Originally for pair spectrometer, adapted for LYSO

$$g_j^{(k+1)} = g_j^{(k)} + \alpha \frac{\sum_i S_{ij} \times \left(\frac{r_i - \sum_m S_{im} \ g_m^{(k)}}{\sum_m S_{im}}\right)}{\sum_m S_{mi}}$$

- next iteration for the spectrum

- lineout response (px i, energy #j);
 Computed in GEANT4
- summed lineout response for px. i, γ_i from experiment

Trial function-based minimization of the response error (TFM)

Parametrized by critical energy(E_c)

dN**Functional form**

$$\frac{dN}{dE} = A \times E^{-2/3} \times e^{-\frac{E}{E_0}}$$

Minimizes the expression :

$$\min_{A,E_{c}} \left[r_{i} - \sum_{j} \left(S_{ij} \frac{dN(E_{j})}{dE} dE_{j} \right) \right]$$

- *S_{ii}*: lineout response (px #i, energy #j); computed in GEANT4
- r_i : lineout response for px i, from exp.

E_i: energy #j

GEANT4 Simulation of LYSO

LYSO Lineout response (GEANT4)

D. Haden et al., Nucl. Inst. and Met. A 951, 163032 (2020)

K. Behm et al., Review of Scientific Instruments 89, 113303 (2018)

Reconstruction of gamma-ray spectrum (2)

Magnetar: Astrophysical QED lab

Gamma-ray burst and supernova powered by a magnetar: GRB 111209A/SN 2011 kl (eso 1527)

Extremely magnetized neutron star $B \sim 50B_c \ (B_c = 4.4 \times 10^{13} \text{ G})$ QED processes in the vicinity

- magnetic photon splitting $(\gamma + B \rightarrow \gamma \gamma)$
- magnetic pair creation $(\gamma + B \rightarrow e^+e^-)$
- inverse Compton scattering (resonant/non-resonant)
- \rightarrow pair cascade
- $\rightarrow e^+e^-$ plasma
- vacuum birefringence
- Astrophysical lab of strong-field QED

Medin and Lai, MNRAS 406, 1379 (2010)

Summary

- 1. Ultrahigh power CPA lasers have opened up new challenging research areas in strong field physics.
- 2. By applying the laser wakefield electron acceleration scheme, monoenergetic multi-GeV electron beams have been produced.
- 3. As part of strong field QED research, nonlinear Compton scattering (NCS) between a laser-driven GeV electron beam and an ultrahigh intensity laser pulse has been explored. The scattering of a multi-GeV electron with several hundred laser photons produced 100's MeV gamma-rays.
- 4. Strong field QED phenomena, such as radiation reaction and Breit-Wheeler pair production, will be also explored.

CoReLS website: https://corels.ibs.re.kr/html/corels_en/

CoReLS Members

Trekking to a cedar forest (summer 2019)