
How To Exploit a Small
Cryptographic Leakage

Adi Shamir
Computer Science Dept

The Weizmann Institute, Israel

(Joint work with Itai Dinur)

The Onassis Foundation Science Lecture Series

Side Channel Attacks

� Are extremely powerful, and in many cases
are the only practical way to break well
designed cryptosystems

� Had been studied for more than a decade in
academia, and for much longer by others

� Many types of side channel attacks are
known, but each one needs different
physical and mathematical techniques

� Still lacks a unifying framework

The typical Scenario Considered So Far:

� A new type of potential leakage is discovered, which
provides a very small amount of very indirect
information about the cryptographic key

� Specialized techniques have to be developed to
extract the full key from a large number of
measurements of this new source of information

� To apply it to a particular device, detailed information
about the physical and logical implementation of the
cryptosystem in that device is usually required

� The success of each attack is extremely sensitive to
the existence of unknown countermeasures

Our Goal in This Paper:

� To develop a new type of side channel attack
which can be universally applied to any device
by exploiting any newly discovered source of
leakage

� Applying the attack will not require detailed
knowledge of the physical and logical
implementation of the cryptosystem

� However, its success will not be guaranteed,
and will have to be tested experimentally

Examples of Possible scenarios:

� We are given a chip, and can probe any wire in
it. However, we have no idea what kind of data
is passing through the wire during each cycle

� We can measure the total power consumption of
the chip, but do not know how this power
consumption is related to the instructions
executed by the processor or to the data
operated upon

� We can use a tiny antenna to measure the RF
field near the surface of the chip, but do not
know how this field is related to the crypto key

Leakage Attacks on Block Ciphers:

� Block ciphers are typically iterated,
applying the same operations in each round
to different values

� Any type of physical leakage is likely to
repeat itself in each round, and all these
values will be available to the cryptanalyst

Leakage Attacks on Block Ciphers:

� The simplest type of leakage we consider is
a single state bit, obtained e.g., by probing a
single register cell or a single wire

� Another type of leakage is a single bit which
is a simple function of many state bits, e.g.,
whether a carry occurred during an addition
operation

� More complicated types of leakage can be
multibit functions such as the Hamming
weight of a byte written into memory

Information Available to the Attacker:

In block

ciphers:
In stream

ciphers:

In leakage

attacks:

Which bits of information are useful?

� Single bits of information in successive
rounds are difficult to relate to each other

� Our approach will be to relate a single bit of
information to the fully known plaintext or
ciphertext

� If the distance between them is too small,
only few key bits can be typically extracted

� If the distance between them is too large, it
is typically too difficult to get the key info

A Typical Example: AES-128

� In AES-128 the original 128-bit key K is
expanded into eleven 128-bit subkeys Ki

� The key expansion operation is invertible, so
the key can be easily derived from any subkey

� The avalanche of all the key bits into a single
state bit takes a few rounds

A Typical Example: AES-128

� A single bit of state data available after the
initial whitening step P+K0 reveals exactly one
key bit

� A single bit of state data available after the
first round is a function of one bit from K1,
together with at most 32 bits from K0

� A single bit of state data after the second
round depends on all the 128 key bits

A Typical Example: AES-128

� Our attack will only use the plaintext and a
single state bit leaked from the end of the
second round in multiple encryptions

� It will ignore the known ciphertext (which is
too far from the state bit we analyze)

� It will ignore the state bits leaked during
earlier/later rounds, since they add little
information/are too difficult to analyze

A Typical Example: AES-128

� No previous type of attack
(exhaustive/statistical/differential/linear)
seems to be applicable in this scenario

� The new attack is completely practical, requiring
about 235 time for complete key recovery

� The mathematical part of the attack was
simulated successfully on a single PC in a few
minutes

The new CUBE ATTACK (Dinur&Shamir):

� Is a very general key derivation algebraic attack

� Generalizes and improves some previous summation-based
attacks such as Integral Attacks and Vielhaber’s AIDA

� Was applied successfully to several stream ciphers
(Trivium, Grain-128) but not to block ciphers

� As we show in this talk, cube attacks are ideal generic
tools which can be applied to any type of leaking
information in side channel attacks

Any cryptographic scheme can be
described by multivariate polynomials:

� Each output bit is some multivariate polynomial
P(x1,…xn,v1,…vm) over GF(2) of secret variables xi

(key bits), and public variables vj (plaintext bits
in block ciphers/MAC’s, IV bits in stream
ciphers)

x1 x2 … x3 v1 v2… v3

secret public

P

The main characteristics of
cryptographically defined polynomials:

(consider the case of the AES, with 128+128 inputs)

� We consider only multivariate polynomials
in fully expanded Algebraic Normal Form

� These polynomials are typically huge, and
can not be explicitly defined, stored, or
manipulated with a feasible complexity

� The data available to the attacker will
typically be insufficient to interpolate
their coefficients from their output values

Black box multivariate polynomials:

The only realistic way to deal with these polynomials
is as black box polynomials, which can be evaluated
on any (fully specified) set of secret and public
inputs:

1 0 … 0 1 1… 0

Fixed

key bits

Tweakable

Plaintext bits

P

The typical problem of
algebraic cryptanalysis:

� Solve a system of black box polynomial equations
over GF(2):

P1(x1…xnv
1
1…v

1
m)=0

P2(x1…xnv
2
1…v

2
m)=1

P3(x1…xnv
3
1…v

3
m)=0

…
in which the fixed key variables xi are unknown, and
the various plaintext/IV variables vji are known

� The problem is NP-hard and exceedingly difficult in
practice, even with explicitly given polynomials

The only easily solvable cases of
simultaneous algebraic equations:

Number of
variables

Total
degree

1

1

Grobner Base Techniques

� Can not be applied to black box polynomials

� Are double exponential in worst case,
exponential in practice

Linearization Techniques:

� Are applicable to any explicit and sufficiently
overdefined system of algebraic equations

� Assigns a new variable name to each term such as
yijk =xixjxk, ignoring their algebraic relationships

� Solves the system of linear equations to derive
the values of the singleton terms xi

The new cube attack:

� Can be applied directly to arbitrary black
box polynomials, even when they are huge

� Can be applied to unknown or partially known
cryptographic schemes given as black boxes

� Can be applied automatically without careful
preanalysis of the properties of the scheme

� Is provably successful when the black box
polynomials are sufficiently random

Cube attacks have two phases:

� A preprocessing phase (via simulation):

– The cryptosystem is given as a black box.
The attacker can obtain one bit of output
for any chosen key and plaintext.

� The online phase (via eavesdropping):

– The stream cipher is given as a black box,
with the key set to a secret fixed value.
The attacker can obtain one bit of output
for any chosen plaintext.

The complexity of the attack:

� For random polynomials of degree d in n input
variables over GF(2), the complexity of cube
attacks is O(n2d-1+n2) bit operations, which is
polynomial in the key size n (!)

� After two rounds of AES-128, the polynomial
describing a single state bit depends on all the
n=128 key bits, but its degree d is still
relatively small, and it is not very random
since many of the key bits do not have an
opportunity to interact with each other

A typical example of a cube attack:

�To demonstrate the attack, consider the
following dense master polynomial of
degree d=3 over three secret variables
x1,x2,x3 and three public variables v1,v2,v3:

P(v1,v2,v3,x1,x2,x3)=

v1v2v3+v1v2x1+v1v3x1+v2v3x1+v1v2x3+v1v3x2+
v2v3x2+v1v3x3+v1x1x3+v3x2x3+x1x2x3+v1v2+
v1x3+v3x1+x1x2+x2x3+x2+v1+v3+1

The effect of partial substitution:

�Substituting v1=1 and v2=1, we get a
derived symbolic polynomial in the
remaining variables x1,x2,x3 and v3:

P(v1,v2,v3,x1,x2,x3)=

x1+x2+v3x1+v3x3+x1x2+x2x3+x1x3+v3x2x3

+x1x2x3+ 1

The “miracle” created by cube attacks:

�The linearized version of the derived
polynomial equations is extremely
underdefined with many more columns
than rows

=

The result of Gauss elimination:

�For random unrelated polynomials
in the rows, Gauss elimination can
cancel only a tiny fraction of the
nonlinear terms

=

The “miracle” created by cube attacks:

�However, polynomials derived from a
single low degree master polynomial are
related in a subtle way, which makes it
possible to simultaneously eliminate the
huge number of nonlinear terms from
the relatively small number of equations
by summing certain carefully selected
subsets of the rows

=

The Boolean cube:

Each corner of the Boolean cube will
have 3 interpretations in cube attacks:

The Boolean cube:

An assignment of 0/1 values to some
subset of the public vj variables

000

011

100

001
111

110

101

010

The Boolean cube:

The simplified symbolic form of the
corresponding derived polynomial

P7

P1

P3

P4P0

P2 P6

P5

The Boolean cube:

The 0/1 value of this derived polynomial
when all the other variables are set to
their public and secret values

0

1

0

0

1

1

1

0

The Boolean cube:

We sum over GF(2) both the symbolic
forms of the derived polynomials and their
0/1 values which occur in the vertices of
various (potentially overlapping) subcubes

The summations:

The summations:

The summations:

In our small example:

�Summing the 4 derived polynomials
with v1=0, all the nonlinear terms
disappear and we get x1+x2; summing
the 4 derived polynomials with v2=0 we
get x1+x2+x3; and summing the four
derived polynomials with v3=0 we get
x1+x3

�The sums of polynomials equated to
their summed values give rise to three
linear equations in the three secret
variables xi, which can be easily solved

Why did all the nonlinear products of secret
variables disappear from the sum?

�All the terms are the products of at
most 3 of the 6 xi and vj variables

�We sum over all the values of two vj’s

�Any term in the master polynomial P
such as x1x2v1 which contains the
nonlinear product of two or more xi in
it, is missing at least one of the vj that
we sum over, and is thus added an even
number of times modulo 2 to the sum

Isn’t cube attack just a differentiation?
No wonder that it reduces the degree…

� However, each terms has two types of variables:
v1v2v4x2x3x4

� What we want: to reduce the x-degree to linear

� What we can do: to reduce the v-degree by
differentiation

� Differentiating the term above wrt v1v2 gives
v4x2x3x4; wrt v1v3 gives 0; neither has x-degree 1.

Consider a general polynomial in n secret
and n public variables:

Total x-degree

Total v-degree

n

n

Each term has an
x-degree and a
v-degree

Differentiating wrt public variables reduce v-degrees

Total x-degree

Total v-degree

n

n

Each term moves
downwards by 1 or
all the way to zero

Differentiating wrt public variables reduce v-degrees

Total x-degree

Total v-degree

n

n-1

After differentiating
with one vi variable

Differentiating wrt public variables reduce v-degrees

Total x-degree

Total v-degree

n

n-2

After differentiating
with two vi variables

A general polynomial will still have x-degree of n
even after differentiating wrt all its public variables

Total x-degree

Total v-degree

n
0

After differentiating
with all vi variables

In cube attacks, we consider general polynomials of
total degree d<n in all the public and secret variables

In cube attacks, we consider general polynomials of
total degree d<n in all the public and secret variables

Total x-degree

Total v-degree

d

d

Our polynomials have
triangular shape:

Differentiating with respect to one public variable:

Total x-degree

Total v-degree

d-1

d-1

Moving downwards
looks the same as
moving to left:

Differentiating with respect to i public variables:

Total x-degree

Total v-degree

d-i

d-i

Moving downwards
looks the same as
moving to left:

Differentiating with respect to d-1 public variables:

Total x-degree

Total v-degree

1

1

Going almost all the way
makes the polynomial
linear in its secret
variables:

Remark:

� The attack is provably successful (rather
than a heuristic) against any sufficiently
random multivariate polynomials in which:
– Each term occurs with probability 0.5

– Each term of maximum degree d occurs with
probability 0.5

– Each term containing one xi variable and d-1 vj
variables occurs with probability 0.5

� Polynomials representing cryptographic
schemes are typically sufficiently random

Applying the cube leakage attack to AES:

�We found a small number of maxterms
of two round AES by summing over
cubes of dimension d=27, and a large
number of maxterms by summing over
cubes of dimension d=28

�The search was not blind, and exploited
the known limitations on how the
plaintext and key bits can interact with
each other during the first two rounds

Applying the cube leakage attack to AES:

�The preprocessing identified a set of
n=128 linearly independent maxterms

�During the actual attack on a particular
key, we have to encrypt 27 sets of 228

chosen plaintexts, and sum up the leaked
bit in each set to determine the right
hand side of each linear equation

�The total complexity of the attack is 235

Cube leakage attacks on SERPENT:

� Complete key avalanche in SERPENT occurs
only at the end of the third round, due to the
smaller 4-bit S-boxes and the weaker
interaction between the state and key bits

� Since the degree of the polynomial grows more
slowly in SERPENT than in AES, we were able
to find n=128 linearly independent equations by
summing over cubes of dimension d=11

� The complexity of the attack is only 27x211=218

Equations for 3-round Serpent:

Conclusions:

�Cube attacks are ideal generic tools in
leakage attacks on block ciphers

�They can be applied even to poorly
understood types of leakage from
unknown cryptosystems

�They do not require knowledge of the
details of the implementation or the
types of countermeasures employed

