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Side Channel Attacks

� Are extremely powerful, and in many cases 
are the only practical way to break well 
designed cryptosystems

� Had been studied for more than a decade in 
academia, and for much longer by others

� Many types of side channel attacks are 
known, but each one needs different 
physical and mathematical techniques

� Still lacks a unifying framework



The typical Scenario Considered So Far:

� A new type of potential leakage is discovered, which 
provides a very small amount of very indirect 
information about the cryptographic key

� Specialized techniques have to be developed to 
extract the full key from a large number of 
measurements of this new source of information

� To apply it to a particular device, detailed information 
about the physical and logical implementation of the 
cryptosystem in that device is usually required 

� The success of each attack is extremely sensitive to 
the existence of unknown countermeasures



Our Goal in This Paper:

� To develop a new type of side channel attack
which can be universally applied to any device
by exploiting any newly discovered source of 
leakage

� Applying the attack will not require detailed 
knowledge of the physical and logical 
implementation of the cryptosystem

� However, its success will not be guaranteed, 
and will have to be tested experimentally



Examples of Possible scenarios:

� We are given a chip, and can probe any wire in 
it. However, we have no idea what kind of data 
is passing through the wire during each cycle

� We can measure the total power consumption of 
the chip, but do not know how this power 
consumption is related to the instructions 
executed by the processor or to the data 
operated upon

� We can use a tiny antenna to measure the RF 
field near the surface of the chip, but do not 
know how this field is related to the crypto key



Leakage Attacks on Block Ciphers:

� Block ciphers are typically iterated, 
applying the same operations in each round 
to different values

� Any type of physical leakage is likely to 
repeat itself in each round, and all these 
values will be available to the cryptanalyst



Leakage Attacks on Block Ciphers:

� The simplest type of leakage we consider is 
a single state bit, obtained e.g., by probing a 
single register cell or a single wire

� Another type of leakage is a single bit which 
is a simple function of many state bits, e.g., 
whether a carry occurred during an addition 
operation

� More complicated types of leakage can be 
multibit functions such as the Hamming 
weight of a byte written into memory



Information Available to the Attacker:

In block

ciphers:
In stream

ciphers:

In leakage

attacks:



Which bits of information are useful?

� Single bits of information in successive 
rounds are difficult to relate to each other

� Our approach will be to relate a single bit of 
information to the fully known plaintext or 
ciphertext

� If the distance between them is too small, 
only few key bits can be typically extracted

� If the distance between them is too large, it 
is typically too difficult to get the key info



A Typical Example: AES-128

� In AES-128 the original 128-bit key K is 
expanded into eleven 128-bit subkeys Ki

� The key expansion operation is invertible, so 
the key can be easily derived from any subkey

� The avalanche of all the key bits into a single 
state bit takes a few rounds



A Typical Example: AES-128

� A single bit of state data available after the 
initial whitening step P+K0 reveals exactly one 
key bit

� A single bit of state data available after the 
first round is a function of one bit from K1, 
together with at most 32 bits from K0

� A single bit of state data after the second 
round depends on all the 128 key bits



A Typical Example: AES-128

� Our attack will only use the plaintext and a 
single state bit leaked from the end of the 
second round in multiple encryptions

� It will ignore the known ciphertext (which is 
too far from the state bit we analyze)

� It will ignore the state bits leaked during 
earlier/later rounds, since they add little 
information/are too difficult to analyze



A Typical Example: AES-128

� No previous type of attack 
(exhaustive/statistical/differential/linear) 
seems to be applicable in this scenario

� The new attack is completely practical, requiring 
about 235 time for complete key recovery

� The mathematical part of the attack was 
simulated successfully on a single PC in a few 
minutes



The new CUBE ATTACK (Dinur&Shamir):

� Is a very general key derivation algebraic attack

� Generalizes and improves some previous summation-based 
attacks  such as Integral Attacks and Vielhaber’s AIDA

� Was applied successfully to several stream ciphers 
(Trivium, Grain-128) but not to block ciphers

� As we show in this talk, cube attacks are ideal generic 
tools which can be applied to any type of leaking 
information in side channel attacks



Any cryptographic scheme can be 
described by multivariate polynomials:

� Each output bit is some multivariate polynomial
P(x1,…xn,v1,…vm) over GF(2) of secret variables xi

(key bits), and public variables vj (plaintext bits 
in block ciphers/MAC’s, IV bits in stream 
ciphers)

x1 x2 … x3 v1 v2… v3

secret public

P



The main characteristics of 
cryptographically defined polynomials:

(consider the case of the AES, with 128+128 inputs)

� We consider only multivariate polynomials 
in fully expanded Algebraic Normal Form

� These polynomials are typically huge, and 
can not be explicitly defined, stored, or 
manipulated with a feasible complexity

� The data available to the attacker will 
typically be insufficient to interpolate
their coefficients from their output values



Black box multivariate polynomials:

The only realistic way to deal with these polynomials 
is as black box polynomials, which can be evaluated
on any (fully specified) set of secret and public 
inputs:

1 0 … 0 1 1… 0

Fixed 

key bits

Tweakable

Plaintext bits

P



The typical problem of 
algebraic cryptanalysis:

� Solve a system of black box polynomial equations
over GF(2): 

P1(x1…xnv
1
1…v

1
m)=0

P2(x1…xnv
2
1…v

2
m)=1

P3(x1…xnv
3
1…v

3
m)=0

…
in which the fixed key variables xi are unknown, and 
the various plaintext/IV variables vji are known

� The problem is NP-hard and exceedingly difficult in 
practice, even with explicitly given polynomials



The only easily solvable cases of 
simultaneous algebraic equations:

Number of 
variables

Total 
degree 

1

1



Grobner Base Techniques

� Can not be applied to black box polynomials

� Are double exponential in worst case, 
exponential in practice



Linearization Techniques:

� Are applicable to any explicit and  sufficiently 
overdefined system of algebraic equations

� Assigns a new variable name to each term such as 
yijk =xixjxk, ignoring their algebraic relationships

� Solves the system of linear equations to derive 
the values of the singleton terms xi



The new cube attack:

� Can be applied directly to arbitrary black 
box polynomials, even when they are huge

� Can be applied to unknown or partially known
cryptographic schemes given as black boxes

� Can be applied automatically without careful 
preanalysis of the properties of the scheme

� Is provably successful when the black box 
polynomials are sufficiently random



Cube attacks have two phases:

� A preprocessing phase (via simulation):

– The cryptosystem is given as a black box. 
The attacker can obtain one bit of output 
for any chosen key and plaintext.

� The online phase (via eavesdropping):

– The stream cipher is given as a black box, 
with the key set to a secret fixed value. 
The attacker can obtain one bit of output 
for any chosen plaintext.



The complexity of the attack:

� For random polynomials of degree d in n input 
variables over GF(2), the complexity of cube 
attacks is O(n2d-1+n2) bit operations, which is 
polynomial in the key size n (!)

� After two rounds of AES-128, the polynomial 
describing a single state bit depends on all the 
n=128 key bits, but its degree d is still 
relatively small, and it is not very random 
since many of the key bits do not have an 
opportunity to interact with each other



A typical example of a cube attack:

�To demonstrate the attack, consider the 
following dense master polynomial of 
degree d=3 over three secret variables 
x1,x2,x3 and three public variables v1,v2,v3:

P(v1,v2,v3,x1,x2,x3)=

v1v2v3+v1v2x1+v1v3x1+v2v3x1+v1v2x3+v1v3x2+ 
v2v3x2+v1v3x3+v1x1x3+v3x2x3+x1x2x3+v1v2+ 
v1x3+v3x1+x1x2+x2x3+x2+v1+v3+1



The effect of partial substitution:

�Substituting v1=1 and v2=1, we get a 
derived symbolic polynomial in the 
remaining variables  x1,x2,x3 and v3:

P(v1,v2,v3,x1,x2,x3)=

x1+x2+v3x1+v3x3+x1x2+x2x3+x1x3+v3x2x3

+x1x2x3+ 1



The “miracle” created by cube attacks:

�The linearized version of the derived 
polynomial equations is extremely 
underdefined with many more columns 
than rows

=



The result of Gauss elimination:

�For random unrelated polynomials
in the rows, Gauss elimination can 
cancel only a tiny fraction of the 
nonlinear terms

=



The “miracle” created by cube attacks:

�However, polynomials derived from a 
single low degree master polynomial are 
related in a subtle way, which makes it 
possible to simultaneously eliminate the 
huge number of nonlinear terms from
the relatively small number of equations 
by summing certain carefully selected 
subsets of the rows 

=



The Boolean cube:

Each corner of the Boolean cube will 
have 3 interpretations in cube attacks:



The Boolean cube:

An assignment of 0/1 values to some 
subset of the public vj variables

000

011

100

001
111

110

101

010



The Boolean cube:

The simplified symbolic form of the 
corresponding derived polynomial

P7

P1

P3

P4P0

P2 P6

P5



The Boolean cube:

The 0/1 value of this derived polynomial 
when all the other variables are set to 
their public and secret values

0

1

0

0

1

1

1

0



The Boolean cube:

We sum over GF(2) both the symbolic 
forms of the derived polynomials and their 
0/1 values which occur in the vertices of 
various (potentially overlapping) subcubes



The summations:



The summations:



The summations:



In our small example:

�Summing the 4 derived polynomials 
with v1=0, all the nonlinear terms 
disappear and we get x1+x2; summing 
the 4 derived polynomials with v2=0 we 
get x1+x2+x3; and summing the four 
derived polynomials with v3=0 we get 
x1+x3

�The sums of polynomials equated to 
their summed values give rise to three 
linear equations in the three secret 
variables xi, which can be easily solved



Why did all the nonlinear products of secret 
variables disappear from the sum?

�All the terms are the products of at 
most 3 of the 6 xi and vj variables

�We sum over all the values of two vj’s

�Any term in the master polynomial P
such as x1x2v1 which contains the 
nonlinear product of two or more xi in 
it, is missing at least one of the vj that 
we sum over, and is thus added an even 
number of times modulo 2 to the sum



Isn’t cube attack just a differentiation?
No wonder that it reduces the degree…

� However, each terms has two types of variables: 
v1v2v4x2x3x4

� What we want: to reduce the x-degree to linear

� What we can do: to reduce the v-degree by 
differentiation

� Differentiating the term above wrt v1v2 gives 
v4x2x3x4; wrt v1v3 gives 0; neither has x-degree 1.



Consider a general polynomial in n secret 
and n public variables:

Total x-degree

Total v-degree

n

n

Each term has an 
x-degree and a 
v-degree



Differentiating wrt public variables reduce v-degrees

Total x-degree

Total v-degree

n

n

Each term moves 
downwards by 1 or 
all the way to zero



Differentiating wrt public variables reduce v-degrees

Total x-degree

Total v-degree

n

n-1

After differentiating 
with one vi variable



Differentiating wrt public variables reduce v-degrees

Total x-degree

Total v-degree

n

n-2

After differentiating 
with two vi variables



A general polynomial will still have x-degree of n
even after differentiating wrt all its public variables

Total x-degree

Total v-degree

n
0

After differentiating 
with all vi variables



In cube attacks, we consider general polynomials of 
total degree d<n in  all the public and secret variables



In cube attacks, we consider general polynomials of 
total degree d<n in  all the public and secret variables

Total x-degree

Total v-degree

d

d

Our polynomials have 
triangular shape:



Differentiating with respect to one public variable:

Total x-degree

Total v-degree

d-1

d-1

Moving downwards 
looks the same as 
moving to left:



Differentiating with respect to i public variables:

Total x-degree

Total v-degree

d-i

d-i

Moving downwards 
looks the same as 
moving to left:



Differentiating with respect to d-1 public variables:

Total x-degree

Total v-degree

1

1

Going almost all the way 
makes the polynomial
linear in its secret 
variables:



Remark:

� The attack is provably successful (rather 
than a heuristic) against any sufficiently 
random multivariate polynomials in which:
– Each term occurs with probability 0.5

– Each term of maximum degree d occurs with 
probability 0.5

– Each term containing one xi variable and d-1 vj
variables occurs with probability 0.5

� Polynomials representing cryptographic 
schemes are typically sufficiently random



Applying the cube leakage attack to AES:

�We found a small number of maxterms
of two round AES by summing over 
cubes of dimension d=27, and a large 
number of maxterms by summing over 
cubes of dimension d=28

�The search was not blind, and exploited 
the known limitations on how the 
plaintext and key bits can interact with 
each other during the first two rounds



Applying the cube leakage attack to AES:

�The preprocessing identified a set of 
n=128 linearly independent maxterms

�During the actual attack on a particular 
key, we have to encrypt 27 sets of 228

chosen plaintexts, and sum up the leaked 
bit in each set to determine the right 
hand side of each linear equation

�The total complexity of the attack is 235



Cube leakage attacks on SERPENT:

� Complete key avalanche in SERPENT occurs 
only at the end of the third round, due to the 
smaller 4-bit S-boxes and the weaker 
interaction between the state and key bits

� Since the degree of the polynomial grows more 
slowly in SERPENT than in AES, we were able 
to find n=128 linearly independent equations by 
summing over cubes of dimension d=11

� The complexity of the attack is only 27x211=218



Equations for 3-round Serpent:



Conclusions:

�Cube attacks are ideal generic tools in 
leakage attacks on block ciphers

�They can be applied even to poorly 
understood types of leakage from 
unknown cryptosystems

�They do not require knowledge of the 
details of the implementation or the 
types of countermeasures employed


