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The Two Types of Crypto Research:

Information-theoretic:

Assumes that:

primitives are perfect

opponent all powerful

Tries to bound:
Statistical properties

Information derived

Examples:
OTP

secret sharing

Complexity-theoretic:

Assumes that:

primitives are imperfect

opponent is bounded

Tries to bound:
runtime of attack

memory required

Examples:
AES

RSA key exchange

But there is a third type, which combines the two
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The Two Types of Crypto Research:

Information-theoretic:

Assumes that:

primitives are perfect

Tries to bound:

Complexity-theoretic:

Assumes that:

opponent is bounded

Tries to bound:
runtime of attack

memory required

Examples:
Finding collisions or inverting edges in random graphs
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Cryptography and Randomness:

The notion of random functions (oracles) 

over the finite domain {0,1,2,…,N-1}:

- truly random when applied to fresh inputs 

- consistent when applied to previously used inputs

f(0)=37

f(1)=92

f(2)=78

…

The random graph associated with f: x f(x)
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Cryptography and Randomness:

When the function f is a permutation, its associated 
graph G is quite boring:
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Random Graphs Have Much More Interesting  Structure:
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Another Example of a Random Graph:
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Cryptography and Randomness:

There is a huge literature on:

The distribution of component sizes, tree sizes, cycle 
sizes, vertex in-degrees, number of predecessors, etc.

In this talk I’ll concentrate on some algorithmic results 

from the last 6 years related to collision finding and 

inversion algorithms

Note that in cryptanalysis, constants are important!
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Interesting algorithmic problems in 

breaking the security of hash functions:

Find some simple collision

(assuming that we can only 

choose random points and 

move forward along edges):

- Find some multicollision

(useful eg in breaking 

concatenated hash fn’s):
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A random path in a random graph defines a collision:
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Finding such collisions

is a very well studied problem:

- Floyd

- Pollard

- Brent

- Yao

- …

And yet there are new surprising ideas!
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The best known technique:

Floyd’s two finger algorithm
- Keep two pointers

- Run one of them at normal speed, and the 

other at double speed, until they collide
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Floyd’s two finger algorithm:
- Keep two pointers

- Run one of them at normal speed, and the 

other at double speed, until they collide
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Can we use Floyd’s algorithm to 

find the entry point into the cycle?
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Can we use Floyd’s algorithm to 

find the entry point into the cycle?
-First find the meeting point
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Can we use Floyd’s algorithm to 

find the entry point into the cycle?
- first find the meeting point

- move one of the fingers back to the beginning

- move the two fingers at equal speed
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Why does it work?

(a good exercise for students)
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Is this the most efficient 

cycle detection algorithm? 
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Is this the most efficient 

cycle detection algorithm? 

- When the path has n vertices and the tail is 

short, Floyd’s algorithm requires about 3n steps, 

and its extension requires up to 5n steps
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Is this the most efficient 

cycle detection algorithm? 

- When the cycle is short, the fast finger can 

traverse it many times without noticing
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A very elegant solution:

Published by Gabriel Nivasch in 2004
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Properties of the Nivasch algorithm:
- Uses a single finger

- Uses negligible amount of memory

- Stops almost immediately after recycling 

- Efficient for all possible lengths of cycle and tail

- Ideal for fast hardware implementations
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The basic idea of the algorithm:
- Maintain a stack of values, which is initially empty 

- Insert each new value into the top of the stack

- Force the values in the stack to be monotonically 

increasing

43 67 9 50 8 21
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The Stack Algorithm:

43 67 9 50 8 21
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The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:

43 67 9 50 8 21

30



40

The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:

43 67 9 50 8 21

630



43

The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:

43 67 9 50 8 21

45210



51

The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:
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The Stack Algorithm:

43 67 9 50 8 21

110
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Stop when two identical values 

appear at the top of the stack 

43 67 9 50 8 21

110
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Claim: The maximal size of the stack is expected to be only 

logarithmic in the path length, requiring negligible memory 

43 67 9 50 8 21

110
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Claim: The stack algorithm always stops during the second 

cycle, regardless of the length of the cycle or its tail   

43 67 9 50 8 21

110
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Proof: The smallest value on the cycle cannot be eliminated 

by any later value. Its second occurrence will eliminate all 

the higher values separating them on the stack.   

43 67 9 50 8 21

110
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The smallest value in the cycle is located at a random 

position, so we expect to go through the cycle at least once 

and at most twice (1.5 times on average)

43 67 9 50 8 21

110
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Improvement: Partition the values into k types, and use a 

different stack for each type. Stop the algorithm when 

repetition is found in some stack.

43 67 9 50 8 21
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The new expected running time: (1+1/k)*n. Note   that n is 

the minimum possible running time of any cycle detecting 

algorithm, and for k=100 we exceed it by only 1%

43 67 9 50 8 21

330
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Unlike Floyd’s algorithm, the Nivasch algorithm provides 

excellent approximations for the length of the tail and cycle

as soon as we find a repeated value, with no extra work

43 67 9 50 8 21

330
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Note that when we stop, the bottom value in each stack 

contains the smallest value of that type, and that these k 

values are uniformly distributed along the tail and cycle

43 67 9 50 8 21

330



70

Adding two special points to the k stack bottoms, at 

least one must be in the tail and at least one must be 

in the cycle, regardless of their sizes 

43 67 9 50 8 21

330
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We can now find the two closest points (e.g., 0 and 2) 

which are just behind the collision point. We can thus 

find the collision after a short synchronized walk

43 67 9 50 8 21

330
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Finding Multicollisions in Random Graphs:

A beautiful new result was presented in 
December 2009 by Joux and Lucks:

3-way collisions can be found in time O(N2/3) and
space O(N1/3)

Time and space can be traded off along the curve
TM=N for M<N1/3

The tradeoff can be generalized from 3-collisions 
to r-collisions  for any r>3
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Lower bounds on Multicollision Finding:

An unpublished lower bound I recently 

obtained while working on the same 

problem proves the optimality of the Joux

and Lucks algorithm for 3-collisions

Note that for 2-way collisions, we can 
use a constant amount of memory and 
get a N1/2 time bound. 
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The Model of Computation:

At  any moment, the attacker can:

- Store a fresh random vertex in some memory 

location, replacing its old contents

- Copy one memory location into another

- Replace the vertex stored in some memory 

location by its successor vertex
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The Basic Idea of the Lower Bound:
Given: M memory  locations 

Define: The accessible graph
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The Basic Idea of the Lower Bound:
Consider all the 2-way 

collisions in the current 

accessible subgraph
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The Lower Bound Proof:

The accessible graph is a dynamic, time-dependent 
subgraph of the full random graph. 

The main observation: The accessible subgraph defined by 
M stored points can contain at most M 2-way collisions, and 
every 3-way collision was at some stage a 2-way collision
which was hit by a new edge from a third direction

The attacker might not be currently aware of most of the 2-
way collisions in his current accessible subgraph, but he 
could find them later by following some paths in a 
particular order from the stored vertices.
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The Lower Bound Proof:

At the end of the 3-way collision finding algorithm, the 

attacker is fully aware of the 3-way collision since he 

has to supply its 3 predecessors

Consider the first point in time in which the attacker 

traversed an edge whose head is an implicit 2-way 

collision defined by the currently stored vertices (such 

a time must exist)

Since the number of 2-way collisions is bounded by 

O(M), this is unlikely to happen if he traverses fewer 

than O(N/M) edges altogether in the whole algorithm
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A Different Problem: Inverting Edges

The Fundamental Problem of Cryptanalysis:

Given a ciphertext, find the corresponding key

Given a hash value, find a first or second preimage

The mathematical problem: Invert an easily 
computed random function f where f(x)=Ex(0) 
or f(x)=H(x)
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The Random Graph Defined by f:
Goal: Go backwards 

Means: Going forwards
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Hellman’s T/M Tradeoff (1979)
Preprocessing phase:

Choose m random starting points, evaluate chains of length t.

Store only pairs of (startpoint,endpoint) sorted by endpoints.

Online phase:  from the given y=f(x) complete the chain.

Find x by re-calculating the chain from its startpoint.
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How can we cover this graph by chains?

The main problem: 

Long chains quickly 

converge
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Use t “independent” tables from t “related” functions 

fi(x)=f(x+ i mod N)

– note that inversion of  fi ⇒ inversion of  f.

Yields a general T/M tradeoff: TM2=N2. 

Typical complexities: Time T=N2/3 ,  space M=N2/3

Hellman’s Solution:
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Oechslin’s Rainbow Tables (2003)
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Use a different sequence of functions

along each path, such as:

111222333 or 123123123 or 

pseudorandom e.g. 1221211

There are many other possible 

tradeoff schemes:

Make the choice of the next function 

dependent on previous values
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There was already a slight problem with the 

multiple graphs of Hellman’s scheme, since 

they are not really independent, and there are 

subtle relationships between their structures

Oechslin’s graphs are even weirder, since 

their multiple functions and layered structure 

does not look like a random graph at all

What kind of random graph are we 

working with in such schemes?



87

Introduced a new notion of random graph 

called Stateful Random Graph

Barkan, Biham, and Shamir (Crypto 2006):

Used it to prove rigorous lower bounds on 

the achievable time/memory tradeoffs of 

any scheme which is based on such graphs, 

including Hellman, Oechslin, and all their 

many known variants and extensions
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The Random Stateful Graph Model

• The nodes in the graph are pairs (yi , si), with N possible images 

yi and S possible states si. 

• The scheme designer can choose any U, then random f is given. 

• The increased number of nodes (NS) can reduce the probability 

of collisions and a good U can create more structured graphs.

• Examples of states: Table# in Hellman, column# in Oechslin. 

• We call it a hidden state, since its value is unknown to the 

attacker and has to be guessed when he tries to invert an image y

.

y1y0

s0 U

x1

s1
f

y2

U

x2

s2
f

y2

U

x2

s2
f

y2

U

x2

s2
f
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The Stateful-Random-Graph Model – cont

U in Hellman:

xi=yi-1 + si-1 mod N

si=si-1

y1y0

s0 U

x1

s1
f

y2

U

x2

s2
f

y2

U

x2

s2
f

y2

U

x2

s2
f
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The Stateful-Random-Graph Model – cont

U in Rainbow:

xi=yi-1 + si-1 mod N

si=si-1 + 1 mod S.

y1y0

s0 U

x1

s1
f

y2

U

x2

s2
f

y2

U

x2

s2
f

y2

U

x2

s2
f
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The Stateful-Random-Graph Model – cont

U in exhaustive search:

xi=si-1
si=si-1 + 1 mod N,

which goes over 

all the preimages

of  f in a single cycle

y1y0

s0 U

x1

s1
f

y2

U

x2

s2
f

y2

U

x2

s2
f

y2

U

x2

s2
f
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The rigorously proven Coverage Theorem 

(exact statement, with no hidden constants):

For any U with S hidden states, 

with overwhelming probability over random f’s, 

the coverage of any collection of M paths of any 

length in the stateful random graph defined by U

is bounded from above by 2A, where 

,)ln(SNSNMA=
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Corollaries:

To cover most of the vertices of any stateful

random graph, you have to use a sufficiently large 

number of hidden states, whose guessing 

determines the minimal possible running time of 

the online phase of the attack in any such scheme.  

This lower bound is applicable to Hellman’s

scheme, to the Rainbow scheme, and to all their 

known variations, and proves their optimality up 

to logarithmic factors



94

• Many governments (including in Israel) plan to issue 
new ID cards in the near future

• They are facing strong public opposition mainly due to 
privacy concerns

• The five possible solutions:

Adding Privacy To Biometric Databases:

Using Random Graphs to Identify People 

Biometric 

ID card + 

database

Biometric 

ID card, 

no DB

Smart ID 

card, no 

biometrics

Printed/ 

laminated 

ID card

No 

universal 

ID card
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strongly opposed by public
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The Planned Transition in Israel

Biometric 

ID card + 

database

Biometric 

ID card, 

no DB

Smart ID 

card, no 

biometrics

Printed/ 

laminated 

ID card

No 

universal 

ID card

Biometric 

ID card + 

database

Biometric 

ID card, 

no DB

Smart ID 

card, no 

biometrics

Printed/ 

laminated 

ID card

No 

universal 

ID card

rejected by authorities,

almost no public opposition
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My Proposal: A Biometric Setbase

Biometric 

ID card + 

database

Biometric 

ID card, 

no DB

Smart ID 

card, no 

biometrics

Printed/ 

laminated 

ID card

No 

universal 

ID card

Biometric 

ID card + 
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Biometric 

ID card, 

no DB

Smart ID 

card, no 
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Printed/ 

laminated 

ID card

No 
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ID card

Biometric 

ID card + 

setbase
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My Proposal: A Biometric Setbase

Biometric 

ID card + 

database

Biometric 

ID card, 

no DB

Smart ID 

card, no 

biometrics

Printed/ 

laminated 

ID card

No 

universal 

ID card

Biometric 

ID card + 

database

Biometric 

ID card, 

no DB

Smart ID 

card, no 

biometrics

Printed/ 

laminated 

ID card

No 

universal 

ID card

acceptable to authorities,

solves most privacy concerns
Biometric 

ID card + 

setbase
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The Official Reasons for Creating a Biometric 

Database in Israel:

• Major reason: Preventing double issuing of official 
ID cards to criminals and crooks 

• Minor reason: Identifying paperless bodies and 
solving major crimes – in very rare cases
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– Irreversibility: After the biometrics are collected for one purpose, 
there will be mission creep

– Mistrust of government: Legal protections are insufficient to 
prevent possible future misuse

– Insufficiency of Cryptographic Protection: Future governments can 
force the disclosure of keys

– Potential dangers: identifying troublemakers, entrapping innocents, 
leakage to outside entities

The Main Counterarguments of Privacy 

Advocates:
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A Standard Biometric Database:

identities biometrics
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A Standard Biometric Database:

identities biometrics
a one-to-one correspondence
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A Standard Biometric Database:

y

x

identities biometrics
a one-to-one correspondence

when someone 

who is already 

registered as Mr X

claims to be Mr Y, 

he will be caught

via his biometrics 



107

• The database should have:
– insufficient information to identify a person via his 
biometrics as Mr X

– sufficient information to disprove a wrong claim that he is 
Mr Y

• This separation should remain true even if:
– the law changes after the database is set up 

– everyone colludes with the government

The Main Observation Behind Setbases:
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Using Setbases Instead of Databases:

file cabinet with all 

the N identities
file cabinet with

all the N biometrics
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Using Setbases Instead of Databases:

file cabinet with

all the N identities
file cabinet with

the N biometrics

secretly and

randomly

partitioned into

drawers with

About sqrt(N) 

files in each



110

Using Setbases Instead of Databases:

file cabinet with

all the identities
file cabinet with

all the biometrics

secretly and

randomly

partitioned into

drawers with

about 1,000 files 

in each drawer

with secret 

linking

between

the drawers, 

but not

between files
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Using Setbases Instead of Databases:

How to catch cheaters

y

v

z

x

k

identities biometrics

a given 

biometrics

(originally

registered

as Mr x)
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Using Setbases Instead of Databases:

How to catch cheaters

y

v

z

x

k

identities biometrics

a given 

biometrics

(originally

registered

as Mr x)

new claimed 

identity y is

very unlikely

to be in the 

same secret

subset with

the original x
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Using Setbases Instead of Databases:

How to Identify Paperless Bodies

y

v

z

x

k

identities biometrics

a given 

biometrics

(originally

registered

as Mr x)
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Using Setbases Instead of Databases:

How to Identify Paperless Bodies

y

v

z

x

k

identities biometrics

a given 

biometrics

(originally

registered

as Mr x)

Police will

investigate all

the 1000

linked identities,

reduced to 100

By gender, age, 

etc
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Using Setbases Instead of Databases:

Even Fully Leaked Data Cannot Entrap

v

z

x

k

i

j
identities biometrics

someone with

full access to

the data wants

to entrap x by

planting his

fingerprints in a

crime scene 
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Using Setbases Instead of Databases:

Even Fully Leaked Data Cannot Entrap

v

z

x

k

i

j
identities biometrics

planting one

fingerprint

has probability

of 1/1000 to

succeed; 

planting multiple

fingerprints

will raise alarm

someone with

full access to

the data wants

to entrap x by

planting his

fingerprints in a

crime scene 
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Real life Problems Are More Complicated:

Can We Eliminate People who Die or Emigrate?

y

v

z

x

k

identities biometrics

What are 

his 

Biometrics?Mr x had 

just died
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Real life Problems Are More Complicated:

How to Deal With Multiple Biometrics?

x

f

identities pictures

A known

picture

A known

fingerprint

p

fingerprints
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Real life Problems Are More Complicated:

Multiple Biometrics Can Identify a Person

x

f

identities pictures

A known

picture

A known

fingerprint

p

fingerprints
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Real life Problems Are More Complicated:

Correct Implementation of Hypergraph Setbases

x

f

identities pictures

A known

picture

A known

fingerprint

p

fingerprints

Note: new 

biometrics can 

be added later 

to an existing 

setbase
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Real life Problems Are More Complicated:

The Advantages of Hypergraph Setbases

x

g

f

identities pictures

uncertain

picture

uncertain

fingerprint

q

p

fingerprints
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Real life Problems Are More Complicated:

The Advantages of Hypergraph Setbases

x

g

f

identities pictures
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uncertain

fingerprint

q

p

fingerprints
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Real life Problems Are More Complicated:

The Dual Problem of Multiple Card Types

b

x

biometrics passports

A known

Passport

number

A known

ID card

number

p

ID cards
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Real life Problems Are More Complicated:

The Dual Problem of Multiple Card Types

b

x

biometrics Passports

A known

passport 

number

A known

ID card

number

p

ID cards

Note: number

of passports

can be much 

smaller than

number of

ID cards 
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• Like any other privacy enhancing technique, 
setbases are a compromise between the conflicting 
demands for privacy and functionality 

• Double issuing can be prevented at almost no 
additional cost and with very high probability

• Individuals can be identified from their biometrics, 
but only by a long, expensive and highly visible
police investigation, and can’t be easily entrapped

• This privacy protection cannot be eliminated by 
changing the law or expropriating the crypto  keys

Summary of Setbases:
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Conclusion:

Random graphs are wonderful objects to study

Understanding their structure can lead to many 

cryptographic and cryptanalytic optimizations, 

as well as to new privacy enhancing techniques

In this talk I gave only a small sample of the 

published and folklore results at the interface 

between cryptography and random graph theory
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