The 2017 Lectures in Computer Science: BIG DATA and Applications

For many years Data were only valuable for their initial and original purpose. The moment the transaction completed, they were considered a burden, good only for off line archiving and eventual controlling. The last few years there was a cataclysmic change. First, cloud storage enabled to keep all past data on line. Second, data mining technology was able to combine and correlate data and produce extraordinary results. Third, Analytics were able to sift through great amounts of data and come to surprising and valuable conclusions. Most important, since every aspect of the economy and our daily routine was captured directly and produced data automatically, Data were not only Big but mirrored every action, every move and generally anything happening in our lives.

We have gathered with the Onassis lectures experts from around the world to sketch not only the Technology, but the earth shaking consequences that will inevitably affect our lives and will influence the way we produce, consume, be informed, act and maybe even think in the future.

Σύντομη περιγραφή του περιεχομένου των Διαλέξεων Ωνάση 2017 στη Πληροφορική

Για πολλά χρόνια τα δεδομένα ήταν πολύτιμα μόνο για τον αρχικό και πρωταρχικό τους σκοπό. Τη στιγμή που ολοκληρωνόταν μια συναλλαγή, εθεωρείτο ως επιβάρυνση, καλή μόνο για την μη άμεσα διαθέσιμη αρχειοθέτηση και τον ενδεχόμενο έλεγχο. Τα τελευταία χρόνια υπήρξε μια κατακλυσμική αλλαγή. Πρώτον, η αποθήκευση στο cloud έχει ενεργοποιηθεί για να διατηρεί όλα τα δεδομένα του παρελθόντος σε απευθείας σύνδεση. Δεύτερον, η τεχνολογία εξόρυξης δεδομένων είναι σε θέση να συνδυάσει και να συσχετίσει δεδομένα και να παράγει εξαιρετικά αποτελέσματα. Τρίτον, το Analytics είναι σε θέση να κοσκινίσει μεγάλα ποσά δεδομένων και να καταλήξει σε εκπληκτικά και πολύτιμα συμπεράσματα. Το πιο σημαντικό, καθώς τα δεδομένα αυτά προέρχονται από κάθε πτυχή της οικονομίας και της καθημερινότητάς μας, δεν είναι μόνο Μεγάλα, αλλά αντικατοπτρίζουν κάθε ενέργεια, κάθε κίνηση και γενικά οτιδήποτε συμβαίνει στη ζωή μας. Στις Διαλέξεις Ωνάση συγκεντρώσαμε εμπειρογνώμονες από όλο τον κόσμο για να σκιαγραφήσουμε όχι μόνο την Τεχνολογία, αλλά και τις σεισμικές αναταράξεις που συνεπάγονται και αναπόφευκτα θα επηρεάσουν τη ζωή μας και τον τρόπο που παράγουμε, καταναλώνουμε, ενημερώνουμε, ενεργούμε και ίσως ακόμη και θα σκεφτόμαστε στο μέλλον.

Michael Stonebraker
Adjunct Professor, Computer Science and Artificial Intelligence Laboratory (CSAIL) MIT,
Cambridge, MA.
Turing Award 2014

Dimitris Bertsimas
Professor, Sloan School of Management, Massachusetts Institute of Technology, Cambridge, USA.

Michael Brodie
Research Scientist, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, USA.

Yannis Ioannidis
Professor, Department of Informatics, University of Athens, Athens, Greece.

Nick Koudas
Professor, Department of Computer Science, University of Toronto, Toronto, Canada.

Nikos Kyrpides
Program Head, DOE Joint Genome Institute, USA.

Yannis Vassiliou
Professor, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece.
Monday 10 July 09:00 - 09:45R e g i s t r a t i o n
09:45 - 10:00Welcome
10:00 - 11:15"Data: The World 's Most Valuable Resource"
Prof. Michael Brodie
11:15 - 11:45B r e a k
11:45 - 13:00"Big Data Exploration: From Abstraction to Zooming"
Prof. Yannis Ioannidis
13:00 - 14:30L u n c h   B r e a k
14:30 - 15:30"Big Data and Data Science: State of the Art and Research Directions",
Prof. Michael Brodie
Tuesday 11 July09:30 - 10:45"The 800 Pound Gorilla of Big Data"
Prof. Michael Stonebraker
10:45-11:15B r e a k
11:15 - 12:30"Time is Money, But How Much? Elasticity and its Many Faces in Cloud-Based Big Data Processing"
Prof. Yannis Ioannidis
12:30 - 14:00L u n c h  B r e a k
14:00 - 15:15"From Data Warehouses to Big Data: Is this a smooth road"
Prof. Yannis Vassiliou
Wednesday 12 July09:30 - 10:45"Identifying the micro from the peta: tales of big data in the micro world I"
Prof. Nikos Kyrpides
10:45 - 11:15B r e a k
11:15 - 12:30"Identifying the micro from the peta: tales of big data in the micro world II"
Prof. Nikos Kyrpides
12:30 - 14:00L u n c h   B r e a k
20:00 "So you want to start a company. How to do it in 5 not-so-easy steps"
Public Lecture by Prof. Michael Stonebraker
Thursday 13 July09:30 - 10:45"Analytics - 1"
Prof. Dimitris Bertsimas
10:45 - 11:15B r e a k
11:15 - 12:30"Data Base Design is Completely Broken"
Prof. Michael Stonebraker
12:30 - 14:00L u n c h   B r e a k
14:00 - 15:15"Retrospection of Social Media Analytics"
Prof. Nick Koudas
Friday 14 July09:30 - 10:45"Analytics - 2"
Prof. Dimitris Bertsimas
10:45 - 11:15B r e a k
11:15 - 12:30"Micro - architecture Analysis of Machine Learning Workload"
Prof. Nick Koudas
12:30 - 14:00L u n c h   B r e a k
14:00 - 15:15"Big Data and Horizon2020: Roadmap for Strategic Research and Innovation - Themes, Examples, Projects"
Prof. Ioannis Vassiliou

NEW Deadline for Application
Wednesday May 31, 2017



Researchers, Postdoctoral Associates, Graduate
and advanced Undergraduate students.

Financial Aid


The Onassis Foundation will support travel and accommodation expenses for up to thirty five Greek students and up to fifteen International students, selected on the basis of their academic performance. The financial aid for the travel of non-European students cannot exceed the maximum amount of the reimbursement provided for the travel of European students. Interested students should attach to their CV, a list of courses taken, their grades and two letters of recommendation. Excellent knowledge of English is required.



Students admitted on the basis of their academic performance will receive a certificate after successful participation in the lectures.


Application Form*
*Please use latin characters

Dear Sir,
I wish to participate in "The 2017 Lectures in Computer Science"

First Name:
Last name:

Please attach your CV (if applicable): (Select your CV file from your computer).

Additional Requirements for Students

  • Graduate students should attach their CV with a detailed description of their studies so far. Advanced undergraduate students should add to their CV a list of courses taken and their grades.
  • Two letters of recommendation should be sent by E-mail directly by the recommending persons to: